Effect of Doping Potassium, Manganese and Cobalt on Zinc Oxide Nanoparticles Crystalline Properties

Article Preview

Abstract:

Zinc oxide has taken over modern studies for its suitability for the electronics, sensors, and optical devices industries related to its structural, optical, and electrical properties. This study tries to improve the properties of zinc oxide by doping it with some materials with distinctive properties to add their properties to zinc oxide. So, potassium has been used for its electrical properties, manganese for its high stability, and cobalt for its optical properties. Experiments were done in the same conditions using the chemical weight sol-gel synthesis method. making Zn0.96 X 0.04O (X = K, Mn, and Co) nanoparticles (NPs). Then, checked how their growth changed the structure of zinc oxide. Using XRD to fix structure and be sure that the doped X completely dissolved in ZnO without changing the structure of the wurtzite. The diffraction patterns demonstrated that all ZnO nanoparticles had hexagonal wurtzite structures and no impurity phase. The crystal sizes using the Scherrer formula are 19.48 nm for pure ZnO, 27.49 nm for Zn0.96 K0.04 O, 24.6 nm for Zn0.96 Mn0.04 O, and 44 nm for Zn0.96 Co 0.04 O. The SEM image shows hexagonal wurtzite structure with particles 32 nm in size for pure ZnO and 28, 34, and 54 nm in size for Zn0.96 X 0.04O, where X = K, Mn, and Co, respectively. The intensity of the Raman spectrum goes down for all X values of Zn0.96 X 0.04O (X = K, Mn, and Co), and the E2H peak is found between 430 and 450 cm-1. The peak intensities get weaker with Mn and Co doping and stronger with K doping. However, the positions of the peaks move slightly when doping, which suggests that the K, Mn, and Co added to ZnO don't change the hexagonal wurtzite structure. This fits well with the XRD patterns that were seen. Rather, it can control the size of the crystal according to the purpose of its use, whether electrical, optical, or for manufacturing sensors.

You might also be interested in these eBooks

Info:

Pages:

1-7

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Vallarasu, S. Dinesh, D. Mithun, R. Anitha, & V. Vijayalakshmi, ZnO heterojunction photocatalysts prepared via facile green synthesis process attaining improved photocatalytic function for degradation of methylene blue dye. Desalination and Water Treatment. 318 (2024) 100391.

DOI: 10.1016/j.dwt.2024.100391

Google Scholar

[2] M. Junaid, S. G. Hussain, & N. Abbas, Band gap analysis of zinc oxide for potential bio glucose sensors, J. Results in Chemistry. 5 (2023) 100961.

DOI: 10.1016/j.rechem.2023.100961

Google Scholar

[3] T. Kessaratikoon, S. Saengsaen, S. Del Gobbo, V. D'Elia, & T. Sooknoi, High surface area ZnO-nanorods catalyzes the clean thermal methane oxidation to CO2. J. Catalysts, 12(12) (2022) 1533.

DOI: 10.3390/catal12121533

Google Scholar

[4] A. A. Barzinjy, Structure, synthesis, and applications of ZnO nanoparticles: A review. J. Journal of Physics. 13(2) (2020) 123-135.

Google Scholar

[5] O. Dulub, L. A. Boatner, & U. Diebold, STM study of the geometric and electronic structure of ZnO (0001)-Zn, (0001)-O, (1010), and (1120) surfaces. J. Surface Science. 519(3) (2002) 201-217.

DOI: 10.1016/s0039-6028(02)02211-2

Google Scholar

[6] R. R. Reeber, Lattice parameters of ZnO from 4.2 to 296 K, J. Journal of applied physics. 41(13) (1970) 5063-5066.

DOI: 10.1063/1.1658600

Google Scholar

[7] S. Abubakar, S. T. Tan, J. Y. C. Liew, Z. A. Talib, R. Sivasubramanian, C.A. Vaithilingam, ... & S. Paiman, Controlled growth of semiconducting ZnO nanorods for piezoelectric energy harvesting-based nanogenerators, J. Nanomaterials. 13(6) (2023) 1025.

DOI: 10.3390/nano13061025

Google Scholar

[8] Y. Cao, H. Q. Alijani, M. Khatami, F. Bagheri-Baravati, S. Iravani, & F. Sharifi, K-doped ZnO nanostructures: Biosynthesis and parasiticidal application, J. Journal of Materials Research and Technology. 15 (2021) 5445-5451.

DOI: 10.1016/j.jmrt.2021.10.137

Google Scholar

[9] S. A. Ahmed, Structural, optical, and magnetic properties of Mn-doped ZnO samples, J. Results in physics. 7 (2017) 604-610.

DOI: 10.1016/j.rinp.2017.01.018

Google Scholar

[10] J.H. Park, Y. J. Lee, J. S. Bae, B. S. Kim, Y. C. Cho, C. Moriyoshi, ... &S.Y. Jeong, Analysis of oxygen vacancy in Co-doped ZnO using the electron density distribution obtained using MEM, J. Nanoscale research letters. (2015)10, 1-7.

DOI: 10.1186/s11671-015-0887-2

Google Scholar

[11] A. Monshi, M. R. Foroughi, & M. R. Monshi, Modified Scherrer equation to estimate nano-crystallite size more accurately using XRD. J. World journal of nano science and engineering. 2(3) (2012) 154-160.

DOI: 10.4236/wjnse.2012.23020

Google Scholar

[12] F. Yang, Y. Xu, M. Gu, S. Zhou, Y. Wang, L. Lu, ... &M. Ma, Synthesis of cesium-doped ZnO nanoparticles as an electron extraction layer for efficient PbS colloidal quantum dot solar cells, J. Journal of Materials Chemistry A. 6(36) (2018) 17688-17697.

DOI: 10.1039/c8ta05946b

Google Scholar

[13] A. S. Riad, S. A. Mahmoud, & A. A. Ibrahim, Structural and DC electrical investigations of ZnO thin films prepared by spray pyrolysis technique, J. Physica B: Condensed Matter. 296(4) (2001) 319-325.

DOI: 10.1016/s0921-4526(00)00571-8

Google Scholar

[14] P. K. Giri, S. Bhattacharyya, B. Chetia, S. Kumari, D. K. Singh, & P. K. Iyer, High-yield chemical synthesis of hexagonal ZnO nanoparticles and nanorods with excellent optical properties, J. Journal of Nanoscience and Nanotechnology. 12(1) (2012) 201-206.

DOI: 10.1166/jnn.2012.5113

Google Scholar

[15] J. M. Calleja, & M. Cardona, Resonant Raman scattering in ZnO, J. Physical Review B. 16(8), (1977) 3753.

DOI: 10.1103/physrevb.16.3753

Google Scholar

[16] S. Guo, Z. Du, S. Zai, Analysis of Raman modes in Mn‐doped ZnO nanocrystals, J.  physical status solid (b). 246(10) (2009) 2329-2332.

DOI: 10.1002/pssb.200945192

Google Scholar