Study of Dislocation Density, Porosity Effect of Synthesized Nano Ferrite Composites

Article Preview

Abstract:

Using Sol-Gel and impregnation processes, the GaNFe2O3 and GaNFe2O3-PPY nanocomposites were synthesized with varying concentrations of PPY 3%, 10%, and 30% by weight. Using the Sci Finder software could not trace any report in the literature for this synthesized Ga(2x+2)NFe2(49-x)O3-PPY nanocomposites. The prepared gallium nitride ferrite and gallium nitride ferrite-Polypyrrole samples were subjected to structural analysis using X-ray diffraction. The X-Ray diffraction characterization confirmed Nano state formation. From the XRD spectra the dislocation density, average crystallite size, number of unit cells, and porosity were calculated and analyzed . It has been observed that with increment of unit cells and dopant concentration there is a decrease of dislocation density of gallium nitride ferrite. When the concentration of PPY is increased in gallium nitride ferrite-Polypyrrole nano composites, the dislocation density increases and the number of unit cells decreases. The porosity is increased as the concentration of PPY is increased from 3%,10% to 30% when compared to GaNFe2O3 nano ferrites.

You might also be interested in these eBooks

Info:

Pages:

27-33

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Huang, X. Duan, Y. Cui and C. M. Lieber, Gallium Nitride Nanowire Nanodevices Nano Letters 2(2002)101-104 .

DOI: 10.1021/nl015667d

Google Scholar

[2] Weiqiang Han, Shoushan Fan, Qunqing Li, Yongdan Hu, Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube– Confined Reaction, Science ,277 (1997) pp.1287-1289.

DOI: 10.1126/science.277.5330.1287

Google Scholar

[3] C.C. Chen, C.C. Yeh, C.H. Chen, M.Y. Yu, H.L. Liu, J.J. Wu, Catalytic growth and characterization of gallium nitride nanowires , Journal of American Chemical Society, 123 (2001) 2791-2798.

DOI: 10.1021/ja0040518

Google Scholar

[4] J Zhang, X.S Peng, X.F Wang, Y.W Wang, L.D Zhang, Micro-Raman investigation of GaN nanowires prepared by direct reaction Ga with NH 3, Chemistry Physics Letters, 345 (2001) 372-376.

DOI: 10.1016/s0009-2614(01)00905-8

Google Scholar

[5] M. Q. He, P. Z. Zhou, S. N. Mohammad, G. L. Harris , .B. Halpern, R. Jacobs, W.L. Sarney and L. Salamanca-Riba, Growth of GaN Nanowires by direct reaction of Ga with NH3, Journal of Crystal Growth. 231(2001) 357-365.

DOI: 10.1016/s0022-0248(01)01466-x

Google Scholar

[6] Kidong Park, Jinha Lee, Doyeon Kim, Jaemin Seo, Jundong Kim, Jae-Pyoung Ahn Jeunghee Park, Synthesis of Polytypic Gallium Phosphide and Gallium Arsenide Nanowires and Their Application as Photodetectors , ACS Omega, 4(2019)3098–3104

DOI: 10.1021/acsomega.8b03548

Google Scholar

[7] I. Rajani, C. Udaya Kiran, V. Brahmaji Rao and Moneesha Fernandes,IOSR Journal of Applied Physics 7, (2015)45-54.

Google Scholar

[8] I. Rajani, Dr. V.Brahmaji Rao, Dr. C. Udaya Kiran, ,"Studies on Conducting Nano composite with Doped Ferrite Ga (2x+2) N Fe2(49-x) O3  , Part –I" ,Proc IMechE Part N: J Nanoengineering and Nanosystems 1–10, IMechE 2015.

DOI: 10.1177/1740349915616160

Google Scholar

[9] Gupta, R.K. (Ed.). (2021). Conducting Polymers for Advanced Energy Applications (1st ed.). CRC Press.

DOI: 10.1201/9781003150374

Google Scholar

[10] Subhash Chander, Surya Kant Tripathi, Inderpreet Kaur,Development in PANI based solar cells: Progress on high-throughput methods, physical-chemical properties and device performance,NextMaterials,8(2025),100895,ISSN2949-8228, doi.org/.

DOI: 10.1016/j.nxmate.2025.100895

Google Scholar

[11] Md. Byzed Hasan, Md. Masud Parvez, Abrar Yasir Abir, Md. Faruak Ahmad,A review on conducting organic polymers: Concepts, applications, and potential environmental benefits,Heliyon,Volume11(2025),e42375

DOI: 10.1016/j.heliyon.2025.e42375

Google Scholar

[12] S. Meenakshy, J. Jesslyn, S. Anas, Development and Applications of Polypyrrole-Based ConductiveInks:AnOverview. Adv.Mater.Technol.10(2025)

DOI: 10.1002/admt.202401216

Google Scholar

[13] Spinks GM, Campbell TE and Wallace GG. Force generation from polypyrrole actuators. Smart Mater Struct14(2005) 406–412.

DOI: 10.1088/0964-1726/14/2/015

Google Scholar

[14] Microstructure and Mechanical Properties of Titanium Alloys Produced by Additive Technologies: New Approaches and Promising Areas of Research ,Metals, 2024.

DOI: 10.3390/met14090966

Google Scholar

[15] Elitzer, D.; Höppel, H.W.; Göken, M.; Baier, D.; Fuchs, C.; Bähr, H.; Meyer, T.; Gallasch, A. Influence of Wire Arc Additive Manufacturing of Ti-6Al-4V on Microstructure and Mechanical Properties for Potential Large-Scale Aviation Parts. Matec web conf. 2020, 321, 03037.

DOI: 10.1051/matecconf/202032103037

Google Scholar

[16] Semenova, I.P.; Shchitsyn, Y.D.; Trushnikov, D.N.; Gareev, A.I.; Polyakov, A.V.; Pesin, M.V. Microstructural Features and Microhardness of the Ti-6Al-4V Alloy Synthesized by Additive Plasma Wire Deposition Welding. Materials16 ( 2023) 941.

DOI: 10.3390/ma16030941

Google Scholar

[17] L. Tauxe, T.A.T. Mullender, and T.Pick,Potbellies, Wasp waists and Superparamagnetism in Magnetic Hysteresis,J. Geophys. Res., 101(1996)571-583.

DOI: 10.1029/95jb03041

Google Scholar

[18] Stanley M. Cisowski ,The relationship between the magnetic properties internal structure of their component Fe-oxide grains", Geophys. J. R. astr. SOC. ,60(1980)107-122.

DOI: 10.1111/j.1365-246x.1980.tb02585.x

Google Scholar

[19] Yannouleas, Constantine & Romanovsky, Igor & Landman, Uzi.Transport, Aharonov-Bohm, and Topological Effects in Graphene Molecular Junctions and Graphene Nanorings. The Journal of Physical Chemistry C. 119(2015).

DOI: 10.1021/jp511934v

Google Scholar

[20] Li, James C. M., C. R. Feng, and Bhakta B. Rath.Emission of Dislocations from Grain Boundaries and Its Role in Nanomaterials, Crystals 11, 1(2021) 41

DOI: 10.3390/cryst11010041

Google Scholar

[21] Indrakanti, Rajani & Rao, V & Chavan, Udaya. (2017). Article Studies on conducting nanocomposite with gallium nitride–doped ferrite, part-II. Proc IMechE Part N:,J Nanomaterials, Nanoengineering and Nanosystems. IMechE (2017) 1-11.

DOI: 10.1177/2397791416676197

Google Scholar

[22] A. Gaber, M. A. Abdel- Rahim , Influence of Calcination Temperature on the Structure and Porosity of Nanocrystalline SnO2 Synthesized by a Conventional Precipitation method Int. J. Electrochem. Sci., 9 (2014) 81 – 95.

DOI: 10.1016/s1452-3981(23)07699-x

Google Scholar

[23] P. Shanthraj, M.A. Zikry, Dislocation density evolution and interactions in crystalline materials, ActaMaterialia,9(2011),7695-7702.

DOI: 10.1016/j.actamat.2011.08.041

Google Scholar

[24] S.J. Wang, D.Y. Xie, J. Wang, A. Misra, Deformation behavior of nanoscale Al–Al2Cu eutectics studied by in situ micropillar compression, Materials Science and Engineering: A, 800 (2021).

DOI: 10.1016/j.msea.2020.140311

Google Scholar

[25] ZHENG, Zhong & YANG, Xiao-xia & LI, Jian-chao & Zhang, Xuexi & Imran, Muhammad & Geng, Lin. Preparation and properties of graphene nanoplatelets reinforced aluminum composites. Transactions of Nonferrous Metals Society of China. 31(2021). 878-886.

DOI: 10.1016/S1003-6326(21)65546-2

Google Scholar

[26] Dongyue Xie, Muh-Jang Chen, Jonathan Gigax, Darby Luscher, Jian Wang, Abigail Hunter, Saryu Fensin, Mohammed Zikry, Nan Li,A fundamental understanding of how dislocation densities affect strain hardening behavior in copper single crystalline micropillars, Mechanics of Materials,184(2023).

DOI: 10.1016/j.mechmat.2023.104731

Google Scholar

[27] Sidor, J.J., Chakravarty, P.,Bátorfi, J.G., Nagy, P. Xie, Q.; Gubicza, J. Assessment of Dislocation Density by Various Techniques in Cold Rolled 1050 Aluminum Alloy. Metals 11(2021)1571.

DOI: 10.3390/met11101571

Google Scholar

[28] Sadeghi, A., Kozeschnik, E. Modeling the Evolution of the Dislocation Density and Yield Stress of Al over a Wide Range of Temperatures and Strain Rates. Metall Mater Trans A 55(2024)1643–1653.

DOI: 10.1007/s11661-024-07358-z

Google Scholar

[29] A. Gaber, M. A. Abdel- Rahim , Influence of Calcination Temperature on the Structure and Porosity of Nanocrystalline SnO2 Synthesized by a Conventional Precipitation method Int. J. Electrochem. Sci., 9 (2014)81 – 95.

DOI: 10.1016/s1452-3981(23)07699-x

Google Scholar

[30] Sebastian Bonardd, Oscar Ramirez, Gabriel Abarca, Ángel Leiva, César Saldías, David Díaz Díaz, Porous chitosan-based nanocomposites containing gold nanoparticles. Increasing the catalytic performance through film porosity, International Journal of Biological Macromolecules, 217 (2022), 864-877.

DOI: 10.1016/j.ijbiomac.2022.07.197

Google Scholar

[31] Salmani, Mohammad & Hashemian, Mohamad & Joneidi Yekta, Hamed & Ghadiri Nejad, Mazyar & Saber-Samandari, Saeed & Khandan, Amirsalar. Synergic Effects of Magnetic Nanoparticles on Hyperthermia-Based Therapy and Controlled Drug Delivery for Bone Substitute Application. Journal of Superconductivity and Novel Magnetism. 33(2020).

DOI: 10.1007/s10948-020-05530-1

Google Scholar

[32] Weiqing Sun, Preparation of multistage porous polymer nanocomposites and its application in architectural design, Measurement: Sensors, 34 (2024), https://doi.org/10.1016/j.measen. 2024.101269.

DOI: 10.1016/j.measen.2024.101269

Google Scholar

[33] Chidambaram, Kannan & Radhakrishnan, Ramanujam. Comparative study on the mechanical and microstructural characterization of AA 7075 nano and hybrid nanocomposites produced by stir and squeeze casting. Journal of Advanced Research. 8(2017).

DOI: 10.1016/j.jare.2017.02.005

Google Scholar

[34] Valencia, Felipe J. & Amigo, Nicolás & Bringa, E.Tension–compression Behavior in Gold Nanoparticle Arrays: a Molecular Dynamics study. Nanotechnology. 32(2021).

DOI: 10.1088/1361-6528/abd5e8

Google Scholar

[35] Edalati, Kaveh, and Nariman Enikeev. Dislocation Density in Ceramics Processed by Severe Plastic Deformation via High-Pressure Torsion Materials 24(2024) 6189.

DOI: 10.3390/ma17246189

Google Scholar

[36] J. Gallet, M. Perez, R. Guillou, C. Ernould, Christophe Le Bourlot, et al.. Experimental measurement of dislocation density in metallic materials: A quantitative comparison between measurements techniques (XRD, R-ECCI, HR-EBSD, TEM). Materials Characterization,199( 2023), 112842.

DOI: 10.1016/j.matchar.2023.112842

Google Scholar

[37] Patange, & Jadhav, Jeevan & Biswas, S. Magnetic properties of monodispersed α-Fe2O3 nanoparticles synthesized via a chemical precursor. Carbon - Science and Technology. 5(2013).

Google Scholar

[38] Akbar, Shakeel & Hasanain, Khurshid & Azmat, Nasia & Nadeem, Muhammad, Synthesis of Fe2O3 nanoparticles by new Sol-Gel method and their structural and magnetic characterizations. 3(2004).

Google Scholar

[39] Chirita, M. and Grozescu, I. Fe2O3-Nanoparticles, Physical Properties and Their Photochemical and Photo-electrochemical Applications. Scientific Bulletin of "Politehnica" University of Timisoara, 54(2009), 1.

Google Scholar

[40] Pooja Dhiman, Amit Kumar and M. Singh , Solution combustion preparation of Fe2O3-nano-flakes: Synthesis and characterization, Advanced Material Letters 3(2012)330-333.

DOI: 10.5185/amlett.2012.4337

Google Scholar