[1]
R. L. Siegel, T. B. Kratzer, A. N. Giaquinto, H. Sung, and A. Jemal, "Cancer statistics, 2025.," CA Cancer J Clin, vol. 75, no. 1, p.10–45, 2025.
DOI: 10.3322/caac.21871
Google Scholar
[2]
B. Katta, C. Vijayakumar, S. Dutta, B. Dubashi, and V. P. Nelamangala Ramakrishnaiah, "The Incidence and Severity of Patient-Reported Side Effects of Chemotherapy in Routine Clinical Care: A Prospective Observational Study.," Cureus, vol. 15, no. 4, p. e38301, Apr. 2023.
DOI: 10.7759/cureus.38301
Google Scholar
[3]
M. J. Nirmala, U. Kizhuveetil, A. Johnson, G. Balaji, R. Nagarajan, and V. Muthuvijayan, "Cancer nanomedicine: a review of nano-therapeutics and challenges ahead," RSC Adv, vol. 13, no. 13, p.8606–8629, 2023.
DOI: 10.1039/d2ra07863e
Google Scholar
[4]
K. Aloss and P. Hamar, "Augmentation of the EPR effect by mild hyperthermia to improve nanoparticle delivery to the tumor," Biochim Biophys Acta Rev Cancer, vol. 1879, no. 4, 2024.
DOI: 10.1016/j.bbcan.2024.189109
Google Scholar
[5]
Y. Yao et al., "Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance," Front Mol Biosci, vol. 7, no. August, p.1–14, 2020.
DOI: 10.3389/fmolb.2020.00193
Google Scholar
[6]
B. H. Alshammari et al., "Organic and inorganic nanomaterials: fabrication, properties and applications," RSC Adv, vol. 13, no. 20, p.13735–13785, 2023.
DOI: 10.1039/d3ra01421e
Google Scholar
[7]
A. Siwach and P. K. Verma, "Synthesis and therapeutic potential of imidazole containing compounds," BMC Chem, vol. 15, no. 1, p.1–69, 2021.
DOI: 10.1186/s13065-020-00730-1
Google Scholar
[8]
I. Ali, M. N. Lone, and H. Y. Aboul-Enein, "Imidazoles as potential anticancer agents," Medchemcomm, vol. 8, no. 9, p.1742–1773, 2017.
DOI: 10.1039/c7md00067g
Google Scholar
[9]
B. Golcienė, R. Vaickelionienė, U. Endriulaitytė, V. Mickevičius, and V. Petrikaitė, "Synthesis and effect of 4-acetylphenylamine-based imidazole derivatives on migration and growth of 3D cultures of breast, prostate and brain cancer cells," Sci Rep, vol. 14, no. 1, p.1–16, 2024.
DOI: 10.1038/s41598-024-76533-4
Google Scholar
[10]
C. D. Mohan et al., "Trisubstituted-imidazoles induce apoptosis in human breast cancer cells by targeting the oncogenic PI3K/Akt/mTOR signaling pathway," PLoS One, vol. 11, no. 4, p.1–15, 2016.
DOI: 10.1371/journal.pone.0153155
Google Scholar
[11]
K. Tanita, Y. Koseki, T. Kamishima, and H. Kasai, "Tropone skeleton enhances the dispersion stability of nano-prodrugs," Chem Lett, vol. 49, no. 3, p.222–224, 2020.
DOI: 10.1246/cl.190876
Google Scholar
[12]
F. Taemaitree et al., "FRET-based intracellular investigation of nanoprodrugs toward highly efficient anticancer drug delivery," Nanoscale, vol. 12, no. 32, p.16710–16715, 2020.
DOI: 10.1039/d0nr04910g
Google Scholar
[13]
H. Kasai et al., "Creation of pure nanodrugs and their anticancer properties," Angewandte Chemie - International Edition, vol. 51, no. 41, p.10315–10318, 2012.
DOI: 10.1002/anie.201204596
Google Scholar
[15]
Y. Koseki et al., "Cytotoxicity of Pure Nanodrugs of SN-38 and Podophyllotoxin Dimers in Human Cancer HepG2, KPL-4, and MCF-7 Cells," Molecular Crystals and Liquid Crystals, vol. 622, no. 1, p.1–5, 2015.
DOI: 10.1080/15421406.2015.1096483
Google Scholar
[16]
Y. Ikuta, Y. Koseki, T. Murakami, M. Ueda, H. Oikawa, and H. Kasai, "Fabrication of pure nanodrugs of podophyllotoxin dimer and their anticancer activity," Chem Lett, vol. 42, no. 8, p.900–901, 2013.
DOI: 10.1246/cl.130224
Google Scholar
[17]
X.-H. Ji, H.-B. Fu, R.-M. Xie, D.-B. Xiao, and J.-N. Yao, "Perylene Nanoparticles Prepared by Reprecipitation Method," Chin J Chem, vol. 20 (2002).
DOI: 10.1002/cjoc.20020200203
Google Scholar
[18]
H. Nakanishi and H. Oikawa, "Reprecipitation Method for Organic Nanocrystals," p.17–31, 2003.
DOI: 10.1007/978-3-642-55545-9_2
Google Scholar
[19]
H. Maki et al., "Morphological effects on the third-order nonlinear optical response of polydiacetylene nanofibers," MRS Commun, vol. 9, no. 3, p.1087–1092, 2019.
DOI: 10.1557/mrc.2019.97
Google Scholar
[20]
G. Zhao, T. Ishizaka, H. Kasai, H. Oikawa, and H. Nakanishi, "Fabrication of unique porous polyimide nanoparticles using a reprecipitation method," Chemistry of Materials, vol. 19, no. 8, p.1901–1905, 2007.
DOI: 10.1021/cm062709w
Google Scholar
[21]
Grasianto, M. Fukuyama, D. M. Mott, Y. Koseki, H. Kasai, and A. Hibara, "Organic nanocrystal enrichment in paper microfluidic analysis," Sens Actuators B Chem, vol. 333, no. July 2020, p.129548, 2021.
DOI: 10.1016/j.snb.2021.129548
Google Scholar
[22]
Grasianto, F. Mao, K. Motohiro, Kasuya Derrick M, Mott Yoshitaka, Koseki Hitoshi, Akihide, and Hibara, "Simple and Sensitive Multi-ion Detection Using Organic Nanocrystal Enrichment on Paper Analytical Device," Anal Chim Acta, vol. 1273, no. 341451, 2023.
DOI: 10.1016/j.aca.2023.341451
Google Scholar
[23]
Y. Miyashita, K. Baba, H. Kasai, H. Nakanishi, and T. Miyashhita, "Molecular Crystals and Liquid Crystals A New Production Process of Organic Pigment Nanocrystals," Molecular Crystals and Liguid Crystals, vol. 492, no. 1, p.268/[632]-274/[638], 2008.
DOI: 10.1080/15421400802330606
Google Scholar
[24]
Y. Takahashi, H. Kasai, H. Nakanishi, and T. M. Suzuki, "Test strips for heavy-metal ions fabricated from nanosized dye compounds," Angewandte Chemie - International Edition, vol. 45, no. 6, p.913–916, 2006.
DOI: 10.1002/anie.200503015
Google Scholar
[25]
Grasianto et al., "Simple Anion Detection on Microfluidic Paper Analytical Devices.," Proceedings of Micro Total Analysis Systems 2022 (µTAS2022, 2022.
Google Scholar
[26]
Grasianto, F. Mao, M. Derrick, K. Yoshitaka, K. Hitoshi, and Hibara. Akihide, "Metal ion Enrichment Using Organic Nanocrystal Coated-Microfluidic Paper Analytical Devices to Achieve Highly Sensitive Colorimetric Detection.," Proceedings of Micro Total Analysis Systems 2020 (µTAS2020), 2020.
DOI: 10.1149/ma2020-01322334mtgabs
Google Scholar
[27]
Y. Takahashi, S. Danwittayakul, and T. M. Suzuki, "Dithizone nanofiber-coated membrane for filtration-enrichment and colorimetric detection of trace Hg(ii) ion," Analyst, vol. 134, no. 7, p.1380–1385, 2009.
DOI: 10.1039/b816461d
Google Scholar
[28]
S. J. Mohammed, A. K. Salih, and K. M. Omer, "Preparation and Characterization of Organic Nanoparticles of Oxadiazole Derivative in Aqueous Media," Journal of Natural Sciences Research, vol. 4, no. 21, p.81–86, 2014.
Google Scholar
[29]
A. Garg, W. Lai, H. Chopra, and R. Agrawal, "Heliyon Nanosponge : A promising and intriguing strategy in medical and pharmaceutical Science," Heliyon, vol. 10, no. 1, p. e23303, 2024.
DOI: 10.1016/j.heliyon.2023.e23303
Google Scholar
[30]
A. A. Sapunova et al., "Laser-Induced Chirality of Plasmonic Nanoparticles Embedded in Porous Matrix," Nanomaterials, vol. 13, no. 10, p.1–12, 2023.
DOI: 10.3390/nano13101634
Google Scholar
[31]
F. Z. Badaoui and D. Bouzid, "Formulation and Optimization of Diclofenac Sodium Loaded Ethylcellulose Nanoparticles," Brazilian Journal of Pharmaceutical Sciences, vol. 58, p.1–11, 2022.
DOI: 10.1590/s2175-97902022e19586
Google Scholar
[32]
D. Hawthorne, A. Pannala, S. Sandeman, and A. Lloyd, "Sustained and targeted delivery of hydrophilic drug compounds: A review of existing and novel technologies from bench to bedside," J Drug Deliv Sci Technol, vol. 78, no. November, p.103936, 2022.
DOI: 10.1016/j.jddst.2022.103936
Google Scholar
[33]
R. D. Desiati, E. Sugiarti, and S. Ramandhany, "Analisa Ukuran Partikel Serbuk Komposit NiCrAl dengan Penambahan Reaktif Elemen untuk Aplikasi Lapisan Tahan Panas [Particle Size Analysis of NiCrAl Composite Powders with Reactive Elements Addition for Thermal Barrier Coating Applications]," Metalurgi, vol. 33, no. 1, p.27, 2018.
DOI: 10.14203/metalurgi.v33i1.358
Google Scholar