Zirconium – Based Ceramic Targets for Producing Nanocrystalline Coatings Resistant to Heat and Thermal Creep

Article Preview

Abstract:

Technology of thermal ceramic barriers (TBC) has been chiefly designed for materials with a single thermal barrier of the 7YSZ type. A high content of Y2O3 ensures a good phase stability of the YSZ material. In search for other alternative materials suitable for TBC, the material most often examined is modified zirconium oxide. The modification consists of stabilizing the ZrO2 powder with Y2O3 and doping it with La, Gd and Nd. This paper presents the results of studies on producing cathodic zirconium oxide-based ceramic targets intended for depositing refractory heat-resistant nano-crystalline TBC coatings. The targets are characterized by a high density (close to its theoretical value) and have a homogeneous phase and chemical structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-94

Citation:

Online since:

May 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] NRC: Coatings for high-temperature structural materials: trends and opportunities. Washington, DC: National Academy of Sciences; (1996).

Google Scholar

[2] R.L. Jones: Thermal barrier coatings. In: Stern KH, editor. Metallurgical and ceramic protective coatings. London: Chapman and Hall; (1996), pp.194-235.

DOI: 10.1007/978-94-009-1501-5_8

Google Scholar

[3] S.M. Meier and D.K. Gupta: Trans ASME Vol. 116 (1994), p.250.

Google Scholar

[4] B.P. Bewlay, M.R. Jackson, J-C. Zhao, P.R. Subramanian, M.G. Mendiratta and J.J. Lewandowski: MRS Bull. Vol. 28 (2003), p.646.

DOI: 10.1557/mrs2003.192

Google Scholar

[5] J.A. Morrison, G.B. Merrill, E.M. Ludeman and J.E. Lane: Use of high temperature insulation for ceramic composites in gas turbines, US Patent, 6, 197, 424; (2001).

Google Scholar

[6] J. Kimmel, N. Miriyala, J. Price, K.L. More, P. Tortorelli, H. Eaton, et al.: J. Eur. Ceram. Soc. Vol. 22 (2002), p.2769.

Google Scholar

[7] H.T. Lin and M.K. Ferber: J. Eur. Ceram. Soc. Vol. 22 (2002), p.2789.

Google Scholar

[8] E.J. Opila: J. Am. Ceram. Soc. Vol. 86 (2003), p.1238.

Google Scholar

[9] P.K. Wright and A.G. Evans: Curr. Opin. Sol. St. Mater. Sci. Vol. 4 (1999), p.255.

Google Scholar

[10] M.J. Stiger, N.M. Yanar, M.G. Topping, F.S. Pettit and G.H. Meier: Zeit. Metallk. Vol. 90 (1999), p.1069.

Google Scholar

[11] A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier and F.S. Pettit: Prog. Mater. Sci. Vol. 46 (2001), p.505.

Google Scholar

[12] N.P. Padture, M. Gell and E.H. Jordan: Science Vol. 296 (2002), p.280.

Google Scholar

[13] U. Schulz, C. Leyens, K. Fritscher, M. Peters, B. Saruhan-Brings, O. Lavigne O, et al.: Aerospace Sci. Technol. Vol. 7 (2003), p.73.

Google Scholar

[14] J.R. Nicholls: MRS Bull. Vol. 28 (2003), p.659.

Google Scholar

[15] D.R. Clarke, C.G. Levi: Ann. Rev. Mater. Res. Vol. 33 (2003), p.383.

Google Scholar

[16] C.G. Levi: Curr. Opin. Sol. St. Mater. Sci. Vol. 8 (2004), p.77.

Google Scholar

[17] X.Q. Cao, R. Vassen and D. Stoever: J. Eur. Ceram. Soc. Vol. 24(2004), p.1.

Google Scholar

[18] A.M. Karlsson, J.W. Hutchinson and A.G. Evans: Mater. Sci. Eng. A Vol. 351 (2003), p.244.

Google Scholar

[19] M.Y. He, J.W. Hutchinson and A.G. Evans: Mater. Sci. Eng. A Vol. 345 (2003), p.172.

Google Scholar

[20] K.W. Schlichting, N.P. Padture, E.H. Jordan and M. Gell: Mater. Sci. Eng. A Vol. 342 (2003), p.120.

Google Scholar

[21] E.P. Busso, J. Lin and S. Sakurai: Acta Mater. Vol. 49 (2001), p.1529.

Google Scholar

[22] R. Vassen, G. Kerkho and D. Stoever: Mater. Sci. Eng. A Vol. 303 (2001), p.100.

Google Scholar

[23] X. Chen, J.W. Hutchinson, M.Y. He and A.G. Evans: Acta Mater. Vol. 51 (2003), p. (2017).

Google Scholar