EG/CNTs Nanofluids Engineering and Thermo-Rheological Characterization

Article Preview

Abstract:

The research work presented here intends to contribute to the overall research effort towards nanofluids engineering and characterization. To accomplish the latter, multiwalled carbon nanotubes (MWCNTs) are added to an ethylene glycol (EG) based fluid. Different aspects concerning the nanofluids preparation and its thermal characterization will be addressed. The study considers and exploits the relative influence of CNTs concentration on EG based fluids, on the suspension effective thermal conductivity and viscosity. In order to guarantee a high-quality dispersion it was performed a chemical treatment on the MWCNTs followed by ultrasonication mixing. Furthermore, the ultrasonication mixing-time is optimized through the UV-vis spectrophotometer to ensure proper colloidal stability. The thermal conductivity is measured via transient hot-wire within a specified temperature range. Viscosity is assessed through a controlled stress rheometer. The results obtained clearly indicate an enhancement in thermal conductivity consistent with carbon nanotube loading. The same trend is observed for the viscosity, which decreases with temperature rise and its effect is nullified at higher shear rates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-74

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, E. A. Grulke: Appl. Phys. Lett. Vol. 79 (2001), p.2252.

Google Scholar

[2] J. A. Eastman, U. S. Choi, S. Li, W. Yu, L. J. Thompson: Appl. Phys. Lett. Vol. 78 (2001), p.718.

Google Scholar

[3] S. Choi, J. Eastman: paper presented at the ASME International Mechanical Engineering Congress & Exposition, San Francisco, (1995).

Google Scholar

[4] Y. Li, J. e. Zhou, S. Tung, E. Schneider, S. Xi: Powder Technology Vol. 196 (2009), p.89.

Google Scholar

[5] W. Evans et al.: Int. J. Heat Mass Trans. Vol. 51 (2008), p.1431.

Google Scholar

[6] K. Esumi, M. Ishigami, A. Nakajima, K. Sawada, H. Honda: Carbon 34 (1996), p.279.

Google Scholar

[7] T. -K. Hong, H. -S. Yang, C. J. Choi: J. Appl. Phys. Vol. 97 (2005), p.064311.

Google Scholar

[8] J. D. Ingle, S. R. Crouch: Spectrochemical analysis. (Prentice Hall, 1988).

Google Scholar

[9] W. B. Russel, D. A. Saville, W. R. Showalter (Cambridge University Press, Cambridge, 1989).

Google Scholar

[10] M. G. Gore, Ed.: Spectrophotometry and Spectrofluorimetry (Oxford University Press, 2000).

Google Scholar

[11] H. Xie, H. Lee, W. Youn, M. Choi: J Appl Phys Vol. 94 (2003), p.4967.

Google Scholar

[12] M. -S. Liu, M. C. -C. Lin, I. -T. Huang, C. -C. Wang: Int. Commun. Heat Mass Vol. 32 (2005), p.1202.

Google Scholar

[13] C. -W. Nan, G. Liu, Y. Lin, M. Li: Appl. Phys. Lett. Vol. 85 (2004), p.3549.

Google Scholar

[14] R. L. Hamilton, O. K. Crosser: Ind. Eng. Chem. Fund. Vol. 1 (1962), p.187.

Google Scholar

[15] Q. -Z. Xue: Physics Letters A Vol. 307 (2003), p.313.

Google Scholar

[16] S. M. S. Murshed, K. C. Leong, C. Yang: Int. J. Therm. Sci. Vol. 47 (2008), p.560.

Google Scholar

[17] Y. Xuan, Q. Li: Int. J. Heat Fluid Flow Vol. 21 (2000), p.58.

Google Scholar

[18] P. Keblinski, S. R. Phillpot, S. U. S. Choi, J. A. Eastman: Int. J. Heat Mass Trans. Vol. 45(2002), p.855.

Google Scholar

[19] J. A. Eastman, S. R. Phillpot, S. U. S. Choi, P. Keblinski: Annu. Rev. Mater. Res. Vol. 34 (2004), p.219.

Google Scholar