Photoconductivity of Nanocomposite MEH-PPV: TiO2 Thin Films

Article Preview

Abstract:

The photoconductivity of a nanocomposite MEH-PPV:TiO2 thin film is investigated. The nanocomposite MEH-PPV:TiO2 thin film was deposited on a glass substrate by spin coating technique. The composition of the TiO2 powder was varied from 5 wt% to 20 wt% (with 5 wt% interval). The concentration of the MEH-PPV is given by 1 mg/1 ml. The current voltage characteristics were measured in dark and under illumination. The photoconductivity showed increment in value as the composition of the TiO2 is raised in the polymer based solution. The absorption showed augmentation as the amount of TiO2 is increased. The escalation of the current voltage is then supported by the results of surface morphology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-92

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Petrella, M. Tamborra, P.D. Cozzoli, M.L. Curri, M. Striccoli, P. Cosma, G.M. Farinola, F. Babudri, F. Naso, and A. Agostiano, TiO2 nanocrystals - MEH-PPV composite thin films as photoactive material, Thin Solid Films 451-452 (2004), 64-68.

DOI: 10.1016/j.tsf.2003.10.106

Google Scholar

[2] C. Kwong, W. Choy, A. Djuriši , P. Chui, K. Cheng, and W. Chan, Poly (3-hexylthiophene): TiO2 nanocomposites for solar cell applications, Nanotechnology 15 (2004), 1156-1161.

DOI: 10.1088/0957-4484/15/9/008

Google Scholar

[3] T. Zeng, Y. Lin, H. Lo, C. Chen, C. Chen, S. Liou, H. Huang, and W. Su, A large interconnecting network within hybrid MEH-PPV/TiO2 nanorod photovoltaic devices, Nanotechnology 17 (2006), 5387-5392.

DOI: 10.1088/0957-4484/17/21/017

Google Scholar

[4] A. Ltaief, J. Davenas, A. Bouazizi, R. Ben Chaâbane, P. Alcouffe, and H. Ben Ouada, Film morphology effects on the electrical and optical properties of bulk heterojunction organic solar cells based on MEH-PPV/C60 composite, Materials Science and Engineering: C 25 (2005).

DOI: 10.1016/j.msec.2004.09.003

Google Scholar

[5] G. Kickelbick, Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale, Progress in Polymer Science 28 (2003), 83-114.

DOI: 10.1016/s0079-6700(02)00019-9

Google Scholar

[6] H. Neugebauer, C. Brabec, J.C. Hummelen, and N.S. Sariciftci, Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells, Solar Energy Materials & Solar Cells 61 (2000), 35-42.

DOI: 10.1016/s0927-0248(99)00094-x

Google Scholar

[7] A.J. Breeze, Z. Schlesinger, S.A. Carter, and P.J. Brock, Charge transport in TiO2/MEH-PPV polymer photovoltaics, Physical Review B 64 (2001), 125205-125214.

Google Scholar

[8] K. Inpor, S. Reabanko, P. Boonchan, N. Mahingsupan, S. Sahasithiwat, P. Limthongkul, C. Sae-Kung, P. Sichanugrist, and C. Thanachayanont, An effect of TiO2 morphology on performance of ITO/TiO2/MEH-PPV/Au solar cells, IEEE journal (2008), 829-832.

DOI: 10.1109/ecticon.2008.4600558

Google Scholar

[9] L. Chi, N. Dinh, P. Long, D. Chien, and T. Thuy, Study on Electrical and Optical Properties of the Hybrid Nanocrystalline TiO2 and Conjugated Polymer Thin Films, Nano-Net 20 (2009), 84-89.

DOI: 10.1007/978-3-642-04850-0_13

Google Scholar

[10] B.L. Anderson and R.L. Anderson, Fundamentals of Semiconductor Devices. Singapore: McGraw Hill, (2005).

Google Scholar

[11] N. Dinh, L. Chi, N. Long, T. Thuy, T. Trung, and H. Kim, Preparation and characterization of nanostructured composite films for organic light emitting diodes, Journal of Physics: Conference Series 187 (2009), pp.012029-12036.

DOI: 10.1088/1742-6596/187/1/012029

Google Scholar