Nano-Based Optical Chemical Sensors

Article Preview

Abstract:

The development of nanoscale materials for optical chemical sensing applications has emerged as one of the most important research areas of interest over the past decades. Nanomaterials exhibit highly tunable size- and shape-dependent chemical and physical properties, show unique surface chemistry, thermal and electrical properties, high surface area and large pore volume per mass unit area. Because of their unique and advantageous features they can help to improve sensitivity, response time and detection limit of sensors. In this review, recently developed photoluminescence-based optical chemical nanosensors are presented. Some future trends of the nanomaterial-based optical chemical sensors are given.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-110

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Chu CS, Lo YL: Sensors Actuators B 143 (2009), 205-210.

Google Scholar

[2] Waich K, Mayr T, Klimant I: Talanta 77 (2008), 66-72.

Google Scholar

[3] Borisov SM, Klimant I: Analyst 133 (2008). 1302-1307.

Google Scholar

[4] Aylott JW:. Analyst 128 (2003), 309-312.

Google Scholar

[5] Riu J, Maroto A, Rius FX: Talanta 69 (2006), 288-301.

Google Scholar

[6] Borisov SM, Mayr T, Mistlberger G, Waich K, Koren K, Chojnacki P, Klimant I: Talanta 79 (2009), 1322-1330.

DOI: 10.1016/j.talanta.2009.05.041

Google Scholar

[7] Buck SM, Koo Y-EL, Park E, Xu H, Philbert MA, Brasuel MA and Kopelman R: Curr Opin Chem Biol 8 (2004), 540-546.

Google Scholar

[8] Buck SM, Xu H, Brausel M, Philbert MA, Kopelman R: Talanta 63 (2004), 41-59.

Google Scholar

[9] Sounderya N, Zhang Y: Recent Patents on Biomedical Engineering 1 (2008), 34-42.

Google Scholar

[10] Nel A, Xia T, Mädler L, Li N: Science 311 (2006), 622-627.

Google Scholar

[11] Shi J, Zhu Y, Zhang X, Baeyens WRG, Garcıa-Campana AM: TrAC, Trends Anal Chem 23 (2004), 351-360.

Google Scholar

[12] Asefa T, Duncan CT, Sharma KK: Aanalyst 134 (2009), 1980-(1990).

Google Scholar

[13] Shtykov SN, Rusanova TY: Russ J Gen Chem 78 (2008), 2521-2531.

Google Scholar

[14] Lapresta-Fernandez A, Cywinski PJ, Moro AJ, Mohr GJ: Anal Bioanal Chem 395 (2009), 1821-1830.

DOI: 10.1007/s00216-009-3007-2

Google Scholar

[15] Zenkl G, Klimant I: Microchim Acta 166 (2009), 123-131.

Google Scholar

[16] Hornig S, Schulz A, Mohr GJ, Heinze T.: J Photopolym Sci Technol 22 (2009), 671-673.

Google Scholar

[17] Borisov SM, Herrod DL, Klimant I: Sensors Actuators B 139 (2009), 52-58.

Google Scholar

[18] Cywinski PJ, Moro AJ, Stanca SE, Biskup C, Mohr GJ: Sensors Actuators B 135 (2009), 472-477.

DOI: 10.1016/j.snb.2008.09.039

Google Scholar

[19] Borisov SM, Mayr T, Klimant I: Anal Chem 80 (2008), 573-582.

Google Scholar

[20] Sumner JP, Kopelman R: Analyst 130 (2005), 528-533.

Google Scholar

[21] Sumner JP, Aylott JW, Monson E, Kopelman R: Analyst 127 (2002), 11-16.

Google Scholar

[22] Sun H, Scharff-Poulsen AM, Gu H, Almdal K: Chem Mater 18 (2006), 3381-3384.

Google Scholar

[23] Doussineau T, Trupp S, Mohr GJ: J Colloid Interface Sci 339 (2009), 266-270.

Google Scholar

[24] Hun X, Zhang ZJ: Microchim Acta 159 (2007), 255-261.

Google Scholar

[25] Arduini M, Mancin F, Tecilla P, Tonellato U: Langmuir 23 (2007), 8632-8636.

DOI: 10.1021/la700971n

Google Scholar

[26] Gao F, Tang LJ, Dai L, Wang L: Spectrochim Acta Part A 67 (2007), 517-521.

Google Scholar

[27] Peng JF, He XX, Wang KM, Tan WH, Wang Y, Liu Y: Anal Bioanal Chem 388 (2007), 645-654.

Google Scholar

[28] Teolato P, Rampazzo E, Arduini M, Mancin F, Tecilla P, Tonellato U: Chem Eur J 13 (2007), 2238-2245.

DOI: 10.1002/chem.200600624

Google Scholar

[29] Dybko A, Wroblewski W, Rozniecka E, Poznisk K, Maciejewski J, Romaniuk R, Brozozka Z: Sens Actuators B 51 (1998), 208-213.

Google Scholar

[30] Malins C, Glever HG, Keyes TE, Vos JG, Dressick WJ, MacCraith BD: Sens Actuators B 67 (2000), 89-95.

DOI: 10.1016/s0925-4005(00)00411-1

Google Scholar

[31] Jorge PAS, Caldas P, Esteves da Silva JCG, Rosa CC, Oliva AG, Farahi F, Santos JL: Fiber Integr Optics 24 (2005), 201-225.

DOI: 10.1080/01468030590922731

Google Scholar

[32] Swindlehurst BR, Narayanaswamy R: Optical sensing of pH in low ionic strength waters. In: Narayanaswamy R, Wolbeis OS (Eds. ) Optical Sensors-Industrial Environmental and Diagnostic Applications. Springer, New York (2004).

DOI: 10.1007/978-3-662-09111-1_12

Google Scholar

[33] Orellana G, Garcia-Fresnadillo D: Environmental and industrial optosensing with tailored luminescent Ru(II) polypyridyl complexes in optical sensors. In: Narayanaswamy R, Wolbeis OS (Eds. ) Optical Sensors-Industrial Environmental and Diagnostic Applications. Springer, New York (2004).

DOI: 10.1007/978-3-662-09111-1_13

Google Scholar

[34] Fritzsche M, Barreiro CG, Hitzmann B, Scheper T: Sens Actuators B 128 (2007), 133-137.

Google Scholar

[35] Jerónimo PCA, Araújo AN, Montenegro MCBSM: Talanta 72 (2007), 13-27.

Google Scholar

[36] Seidel MP, DeGrandpre MD, Dickson AG: Mar Chem 109 (2008), 18-28.

Google Scholar

[37] Brigo L, Carofiglio T, Fregonese C, Meneguzzi F, Mistura G, Natali M, Tonellato U: Sens Actuators B 130 (2008), 477-482.

DOI: 10.1016/j.snb.2007.09.020

Google Scholar

[38] Ge FY, Chen LG: J Fluoresc 18 (2008), 741-474.

Google Scholar

[39] Hakonen A, Hulth S: Anal Chim Acta 606 (2008), 63-71.

Google Scholar

[40] Bradley M, Alexander L, Duncan K, Chennaoui M, Jones AC, Martin RMS: Bioorg Med Chem Lett 18 (2008), 313-317.

Google Scholar

[41] Dong S, Luo M, Peng G, Cheng W: Sens Actuators B 129 (2008), 94-98.

Google Scholar

[42] Doussineau T, Smaihi M, Mohr GJ: Adv Funct Mater 19 (2009), 117-122.

Google Scholar

[43] Schulz A, Hornig S, Liebert T, Birckner E, Heinze T, Mohr GJ: Org Biomol Chem 7 (2009), 1884-1889.

DOI: 10.1039/b900260j

Google Scholar

[44] Hornig S, Biskup C, Grafe A, Wotschadlo J, Liebert T, Mohr GJ, Heinze T: Soft Matter 4 (2008), 1169-1172.

DOI: 10.1039/b800276b

Google Scholar

[45] Burns A, Sengupta P, Zedayko T, Baird B, Wiesner U: Small 2 (2006), 723-726.

Google Scholar

[46] Gao F, Wang L, Tang LJ, Zhu CQ: Microchim Acta 152 (2005), 131-135.

Google Scholar

[47] Kim S, Pudavar HE, Prasad PN: Chem Commun 19 (2006), 2071-(2073).

Google Scholar

[48] Allard E, Larpent C: J Polym Sci, Part A: Polym Chem 46 (2008), 6206-6213.

Google Scholar

[49] Welser K, Perera MDA, Aylott JW, Chan WC: Chem Commun 43 (2009), 6601-6603.

Google Scholar

[50] Jerónimo PCA, Araújo AN, Montenegro MCBSM: Talanta 72 (2007), 13-27.

Google Scholar

[51] Wencel D, MacCraith BD, McDonagh C: Sens Actuators B 139 (2009), 208-213.

Google Scholar

[52] Niu CG, Gui XQ, Zeng GM, Guan AL, Gao PF: Anal Bioanal Chem 383 (2005), 349-357.

Google Scholar

[53] Niu CG, Gui XQ, Zeng GM, Yuan XZ: Analyst 130 (2005), 1551-1556.

Google Scholar

[54] Niu CG, Guan AL, Zeng GM, Liu YG, Huang GH, Gao PF, Gui XQ: Anal Chim Acta 547 (2005), 221-228.

Google Scholar

[55] Park EJ, Reid KR, Tang W, Kennedy RT, Kopelman R: J Mater Chem 15 (2005), 2913-2919.

Google Scholar

[56] Ge XD, Kostov Y, Rao G: Biosens Bioelectron 18 (2003), 857-865.

Google Scholar

[57] Kermis HR, Kostov Y, Harms P, Rao G: Biotechnol Prog 18 (2002), 1047-1053.

Google Scholar

[58] Xu Z, Rollins A, Alcala R, Marchant RE: J Biomed Mater Res A 39 (1998), 9-15.

Google Scholar

[59] Song A, Parus S, Kopelman R: Anal Chem 69 (1997), 863-867.

Google Scholar

[60] Wolfbeis OS: J Mater Chem 15(2005), 2657-2669.

Google Scholar

[61] Papkovsky DB, O'Riordan TC: J Fluoresc 15 (2005), 569.

Google Scholar

[62] Kostov Y, Harms P, Randers-Eichhorn L, Rao G: Biotechnol Bioeng 72 (2001), 346-352.

DOI: 10.1002/1097-0290(20010205)72:3<346::aid-bit12>3.0.co;2-x

Google Scholar

[63] Ge X, Hanson M, Shen H, Kostov Y, Brorson KA, Frey DD, Moreira AR, Rao G: J Biotechnol 122 (2006), 293-306.

Google Scholar

[64] John GT, Klimant I, Wittmann C, Heinzle E: Biotechnol Bioeng 81 (2003), 829-836.

Google Scholar

[65] Zanzotto A, Szita N, Boccazzi P, Lessard P, Sinskey AJ, Jensen KH: Biotechnol Bioeng 87 (2004), 243-254.

DOI: 10.1002/bit.20140

Google Scholar

[66] Hanson MA, Ge X, Kostov Y, Brorson KA, Moreira AR, Rao G: Biotechnol Bioeng 97(2007), 833-841.

DOI: 10.1002/bit.21320

Google Scholar

[67] Mehta G, Mehta K, Sud D, Song JW, Bersano-Begey T, Futai N, Heo YS, Mycek MA, Linderman JJ, Takayama S: Biomed Microdevices 9 (2007), 123-134.

DOI: 10.1007/s10544-006-9005-7

Google Scholar

[68] Schmaelzlin E, van Dongen JT, Klimant I, Marmodee B, Steup M, Fisahn J, Geigenberger P, Loehmannsroeben H-G: Biophys J 89 (2005), 1339-1345.

DOI: 10.1529/biophysj.105.063453

Google Scholar

[69] Cao Y, Koo Y-EL, Kopelman R: Analyst 129 (2004), 745-750.

Google Scholar

[70] Gouin JF, Baros F, Birot D, Andre JC: Sens Actuators B 38-39 (1997), 401-406.

Google Scholar

[71] Klimant I, Meyer V, Kuhl M: Limnol Oceanogr 40 (1995), 1159-1165.

Google Scholar

[72] Hasumoto H, Imazu T, Miura T, Kogure K: J Oceanogr 62 (2006), 99-103.

Google Scholar

[73] Koenig B, Kohls O, Holst G, Glud RN, Kuehl M: Mar Chem 97 (2005), 262-276.

Google Scholar

[74] Schroeder CR, Polerecky L, Klimant I: Anal Chem 79 (2007), 60-70.

Google Scholar

[75] Meruva RC, Meyerhoff ME: Biosens Bioelectron 13 (1998), 201-212.

Google Scholar

[76] Schmaelzlin E, Walz B, Klimant I, Schewe B, Loehmannsroeben H-G: Sens Actuators B 119 (2006), 251-254.

Google Scholar

[77] Babilas P, Liebsch G, Schacht V, Klimant I, Wolfbeis OS, Szeimies R-M, Abels C: Microcirculation 12 (2005), 477-487.

DOI: 10.1080/10739680591003314

Google Scholar

[78] Kimura S, Matsumoto K, Mineura K, Itoh T: J Neurol Sci 258 (2007), 60-68.

Google Scholar

[79] McDonagh C, Bowe P, Mongey K, MacCraith BD: J Non-Cryst Solids 306 (2002), 138-148.

DOI: 10.1016/s0022-3093(02)01154-7

Google Scholar

[80] Borisov SM, Klimant I: Microchim Acta 164 (2009), 7-15.

Google Scholar

[81] Koo YEL, Cao YF, Kopelman R, Brasuel M, Philbert MA: Anal Chem 76 (2004), 2498-2505.

DOI: 10.1021/ac035493f

Google Scholar

[82] Borisov SM, Nuss G, Klimant I: Anal Chem 80 (2008), 9435-9442.

Google Scholar

[83] Uauy R, Olivares M, Gonzalez M: Am J Clin Nutr 67 (1998), 952S-959S.

Google Scholar

[84] Brasola E, Mancin F, Ramazzo E, Tecilla P, Tonellato U. Chem Commun (2003), 3026-3027.

Google Scholar

[85] Ramazzo E, Brasola E, Marcuz S, Mancin F, Tecilla P, Tonellato U: J Mater Chem 15 (2005), 2687-2696.

DOI: 10.1039/b502052b

Google Scholar

[86] Méallet-Renault R, Pansu R, Amigoni-Gerbier S, Larpent C. Chem Commun (2004), 2344-2345.

DOI: 10.1039/b407766k

Google Scholar

[87] Frigoli M, Ouadahi K, Larpent C: Chem Eur J, 15 (2009), 8319-8330.

Google Scholar

[88] Zheng JN, Xiao C, Fei Q, Li M, Wang BJ, Feng GD, Yu HM, Huan YF, Song ZG (2010) Nanotechnology. doi: 10. 1088/0957-4484/21/4/045501.

DOI: 10.1088/0957-4484/21/4/045501

Google Scholar

[89] Cuajungco MP, Lees GJ: Neurobiol Dis 4 (1997), 137-169.

Google Scholar

[90] Frederickson CJ, Suh SW, Silva D, Thompson RB: J Nutr 130 (2000), 1471S-1483S.

Google Scholar

[91] Choi DW, Koh JY: Annu Rev Neurosci 21 (1998), 347-375.

Google Scholar

[92] Cunnane SC: Zinc: Clinical and Biochemical Significance. CRC Press Inc, Boca Raton (1988).

Google Scholar

[93] Silvia J, Williams R: The biological Chemistry of the Elements: The Inorganic Chemistry of Life. Claredon Press, Oxford (1991).

Google Scholar

[94] Park EJ, Brasuel M, Behrend C, Philbert MA, Kopelman R, Anal Chem 75 (2003), 3784-3791.

DOI: 10.1021/ac0342323

Google Scholar

[95] Stöber W, Fink A, Bohn E: J Colloid Interface Sci 26 (1968), 62-69.

Google Scholar

[96] Van Blaaderen A, Kentgens APM: J Non-Cryst Solids 149(1992), 161-178.

Google Scholar

[97] Van Blaaderen A, Van Geest J, Vrij A: J Colloid Interface Sci 154 (1992), 481-501.

DOI: 10.1016/0021-9797(92)90163-g

Google Scholar

[98] Van Blaaderen A, Vrij A: J Colloid Interface Sci 156 (1993), 1-18.

Google Scholar

[99] Van Blaaderen A, Vrij A: Langmuir 8 (1992), 2921-2931.

Google Scholar

[100] Verhaegh NAM, Van Blaaderen A: Langmuir 10 (1994), 1427-1438.

Google Scholar

[101] Burdo JR., Connor JR: Biometals 16 (2003), 63-75.

Google Scholar

[102] Felt BT, Lozoff B: J Nutr 126 (1996), 693-701.

Google Scholar

[103] Earley CJ, Connor JR, Beard JL, Malecki EA, D. K. Epstein DK, Allen RP: Neurology 54 (2000), 1698-1700.

DOI: 10.1212/wnl.54.8.1698

Google Scholar

[104] Golovina VA, Blaustein MP: Science 275 (1997), 1643-1648.

Google Scholar

[105] Kennedy RT, Huang L, Aspenwall CAJ: J. Am Chem Soc 118 (1996), 1795-1796.

Google Scholar

[106] Nuccitelli R: Methods in Cell Biology. Academic Press, Inc., San Diego (1994).

Google Scholar

[107] Ross WN, Calcium On The Level. Biophys J 64, 1655-1656.

Google Scholar

[108] Kotyk A, Slavik J: Intracellular pH and its Measurement. CRC Press, Boca Raton (1989).

Google Scholar

[109] Gotoh H, Kajikawa M, Kato H, Suto K: Brain Res 828 (1999), 163-168.

Google Scholar

[110] Cheng C, Reynolds IJ: Neuroscience 95 (2000), 973-979.

Google Scholar

[111] Brocard JB, Rajdev S, Reynolds IJ: Neuron 11 (1993), 751-757.

Google Scholar

[112] He H, Jenkins K, Lin C: Anal Chem Acta 661 (2008), 197-204.

Google Scholar

[113] Ruedas-Rama MJ, Hall EAH: Analyst 131 (2006), 1282-1291.

Google Scholar

[114] Graefe A, Stanca SE, Nietzsche S, Kubicova L, Beckert R, Biskup C, Mohr GJ: Anal Chem 80 (2008), 6526-6531.

DOI: 10.1021/ac800115u

Google Scholar

[115] Clark HA, Kopelman R, Tjalkens R, Philbert MA: Anal Chem 71 (1999), 4837-4843.

Google Scholar

[116] Brasuel M, Kopelman R, Miller TJ, Tjalkens R, Philbert MA: Anal Chem 73 (2001), 2221-2228.

Google Scholar

[117] Gao F, Luo FB, Chen XX, Yao W, Yin J, Yao Z, Wang L: Talanta 80 (2009), 202-206.

Google Scholar

[118] Ai KL, Zhang BH, Lu LH : Angew Chem Int Ed 48 (2009), 304-308.

Google Scholar

[119] Taylor KML , Lin WB: J Mater Chem 19 (2009), 6418-6422.

Google Scholar

[120] Wu XD, Song LT, Li B, Liu YH: J Lumin 130 (2010), 374-379.

Google Scholar

[121] Zhang HR, Li B, Lei BF, Li WL: J Lumin 128 (2008), 1331-1338.

Google Scholar

[122] Li L, Gao XK, Lv BQ, Zhou ZD, Xiao D: Sensor Lett 5 (2007), 441-444.

Google Scholar