Growth of Calcium Phosphate Using Chemically Treated Titanium Oxide Nanotubes

Article Preview

Abstract:

Many materials with different surfaces have been developed for dental and orthopedics implants. Among the various materials for implants, titanium and bioactive ones such as calcium phosphates and hydroxyapatite, are widely used clinically. When these materials are inserted into bone several biological reactions occur. Thes processes can be associated with surface properties (topography, roughness and surface energy). In this work, ingots were obtained from titanium and molybdenum by using an arc-melting furnace. They were submitted to heat treatment at 1100°C for one hour, cooled in water and cold worked by swaging. Titanium nanotubes were fabricated on the surface of Ti-7,5Mo alloy by anodization, and then treated with NaOH solution to make them bioactive, to induce growth of calcium phosphate in a simulated body fluid. . It is shown that the presence of titanium nanotubes induces the growth of a sodium titanate nanolayer. During the subsequent in-vitro immersion in a simulated body fluid, the sodium titanate nanolayer induced the nucleation and growth of nano-dimensioned calcium phosphate. These titanium nanotubes can be useful as a well-adhered bioactive surface layer on Ti implant metals for orthopedic and dental implants.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-68

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Gerber, D. Wenaweser, J. Heutz-Mayfield, N.P. Lang and G. R Persson, Comparison of bacterial plaque samples from titanium implant and tooth surfaces by different methods, Clin. Oral Impl. Res. 17 (2006) 1-7.

DOI: 10.1111/j.1600-0501.2005.01197.x

Google Scholar

[2] M.M. Bornstein, B. Schmid, A. Lussi, V.C. Belser, D. Buser, Early loading of non-submerged titanium implants with a sandblasted and acid-etched surface 5-year results of a prospective study in partially edentulous patients, Clin. Oral Impl. Res. 16 (2005).

DOI: 10.1111/j.1600-0501.2005.01209.x

Google Scholar

[3] M. Geetha, U.K. Mudali, A.K. Gogia, R. Asokamani, B. Ray, Influence of microstructure and alloying elements on corrosion behavior of Ti–13Nb–13Zr alloy, Corrosion Science 46 (2004) 877-892.

DOI: 10.1016/s0010-938x(03)00186-0

Google Scholar

[4] W.F. Ho, C.P. Ju, J.H. Chern Lin, Structure and properties of cast binary Ti}Mo alloys, Biomaterials 20 (1999) 2115-2122.

DOI: 10.1016/s0142-9612(99)00114-3

Google Scholar

[5] M.C.R. Alves Rezende, A.P.R. Alves, E.N. Codaro, C.A.M. Dutra, Effect of commercial mouthwashes on the corrosion resistance of Ti-10Mo experimental alloy, J. Mater. Sci. Mater. Med. 18 (2007) 149-154.

DOI: 10.1007/s10856-006-0674-9

Google Scholar

[6] A.P.R. Alves, F.A. Santana, L.A.A. Rosa, S.A. Cursino, E.N. Codaro, A study on corrosion resistance of the Ti–10Mo experimental alloy after different processing methods, Mater. Sci. Eng. C 24 (2004) 693-696.

DOI: 10.1016/j.msec.2004.08.013

Google Scholar

[7] S. Kumar, T.S.N. Sankara Narayanan, Corrosion behaviour of Ti-15Mo alloy for dental implant Applications, Journal of Dentistry 36 (2008) 500-507.

DOI: 10.1016/j.jdent.2008.03.007

Google Scholar

[8] S.J. Li, R. Yang, M. Niinomi, Y.L. Hao, Y.Y. Cui, Formation and growth of calcium phosphate on the surface of oxidized Ti–29Nb–13Ta–4. 6Zr alloy, Biomaterials 25 (2004) 2525-2532.

DOI: 10.1016/j.biomaterials.2003.09.039

Google Scholar

[9] T.C. Niemeyer, C.R. Grandini, L.M.C. Pinto, A.C.D. Angelo, S.G. Schneider, Corrosion behavior of Ti–13Nb–13Zr alloy used as a biomaterial, J. Alloy Comp. 476 (2009)172-175.

DOI: 10.1016/j.jallcom.2008.09.026

Google Scholar

[10] B. Yang, M. Uchida, H.M. Kim, X. Zhang, T. Kokubo, Preparation of bioactive titanium metal via anodic oxidation treatment, Biomaterials 25 (2004) 1003-1010.

DOI: 10.1016/s0142-9612(03)00626-4

Google Scholar

[11] S.G. Steinemann. Titanium: the material of choice? Periodontol 2000 17 (1998) 7-21.

Google Scholar

[12] L. Sun, C.C. Berndt, K.A. Gross, A. Kucuk, Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review, J. Biomed. Mater. Res. 58 (2001) 570-592.

DOI: 10.1002/jbm.1056

Google Scholar

[13] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27 (2006) 2907-2915.

DOI: 10.1016/j.biomaterials.2006.01.017

Google Scholar

[14] B. Sanden, C. Olerud, S. Larsson, Hydroxyapatite coating enhances fixation of loaded pedicle screws: a mechanical in vivo study in sheep, Eur. Spine J. 10 (2001) 334-339.

DOI: 10.1007/s005860100291

Google Scholar

[15] R. Born, D. Scharnweber, S. Rossler, M. Stolzel, M. Thieme, C. Wolf, H. Worch, Surface analysis of titanium based biomaterials, Fresenius J. Anal Chem. 361 (1998) 697-700.

DOI: 10.1007/s002160050997

Google Scholar

[16] H.M. Kim, T. Kokubo, S. Fujibayashi, S. Nishiguchi, T. Nakamura, Bioactive macroporous titanium surface layer on titanium substrate, J. Biomed. Mater. Res. 52 (2000) 553-557.

DOI: 10.1002/1097-4636(20001205)52:3<553::aid-jbm14>3.0.co;2-x

Google Scholar

[17] Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, Y. Tang, Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires, Nano Lett. 7 (2002) 717-720.

DOI: 10.1021/nl025541w

Google Scholar

[18] B.B. Lakshmi, C.J. Patrissi, C.R. Martin, Sol–gel template synthesis of semiconductor oxide micro- and nanostructures, Chem. Mater. 9 (1997) 544-550.

DOI: 10.1021/cm970268y

Google Scholar

[19] D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res. 16 (2001) 3331-3334.

DOI: 10.1557/jmr.2001.0457

Google Scholar

[20] F. Barrère, M. E. Snel, C.A. van Blitterswijk, K. Groot, P. Layrolle, Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants, Biomaterials 25 (2004) 2901-2910.

DOI: 10.1016/j.biomaterials.2003.09.063

Google Scholar