AgNPs Included GC/Poly [3, 4-Ethylenedioxythiophene] Modified Electrode Toward Electrochemical Detection of H2O2

Article Preview

Abstract:

An Ag nanoparticle included Glassy carbon (GC)/poly [3, 4-ethylenedioxythiophene] (PEDOT) modified electrode was organized by a straightforward electrochemical method without using any stabilizer or reducing agent. The obtained working electrodes showed a high conductivity when compared to the bare electrode. It also shows superior ability of electrochemically sensing towards the electroreduction of H2O2 with no need for an enzyme or mediator immobilized in the electrode. Under optimum condition the detection limit using chronoamperometry response was estimated to be 0.61 M based on the criterion of signal-to-noise ratio of 3 (S/N of 3).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-82

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Gerard, A. Chaubey, B.D. Malhotra, Application of conducting polymers to biosensors, Biosens. Bioelectron. 17 (2002) 345-359.

Google Scholar

[2] C.B. Duke, L.B. Schein, Organic solids: is energy‐band theory enough?, Phys. Today 33 (1980) 42.

DOI: 10.1063/1.2913938

Google Scholar

[3] E. Armelin, A. Meneguzzi, C.A. Ferreira, C. Aleman, Polyaniline, polypyrrole and poly(3, 4-ethylenedioxythiophene) as additives of organic coatings to prevent corrosion, Surf. Coat. Technol. 203 (2009) 3763-3769.

DOI: 10.1016/j.surfcoat.2009.06.019

Google Scholar

[4] B.K. Annis, A.H. Narten, A.G. MacDiarmid, A.F. Richter, A covalent bond to bromine in HBr-treated polyaniline from X-ray diffraction, Synth. Met. 22 (1988) 191-199.

DOI: 10.1016/0379-6779(88)90216-0

Google Scholar

[5] P. Vacca, M. Petrosino, R. Miscioscia, G. Nenna, C. Minarini, D. Della Sala, A. Rubino, Poly(3, 4-ethylenedioxythiophene): poly(4-styrenesulfonate) ratio: Structural, physical and hole injection properties in organic light emitting diodes, Thin Solid Films 516 (2008).

DOI: 10.1016/j.tsf.2007.12.143

Google Scholar

[6] T. Ung, L.M. Liz-Marzan, P.J. Mulvaney, Optical Properties of Thin Films of Au@SiO2 Particles, J. Phys. Chem. B, 105, (2000) 3441-3452.

DOI: 10.1021/jp003500n

Google Scholar

[7] I. Hussain, M. Brust, A.J. Papworth, A.I. Cooper, Preparation of Acrylate-Stabilized Gold and Silver Hydrosols and Gold−Polymer Composite Films, Langmuir 19 (2003) 4831-4835.

DOI: 10.1021/la020710d

Google Scholar

[8] Y. Nakao, Preparation and characterisation of noble metal solid sols in poly(methyl methacrylate), J. Chem. Soc. Chem. Commun. 10 (1993) 826-828.

DOI: 10.1039/c39930000826

Google Scholar

[9] R.V. Kumar, R. Elgamiel, Y. Diamant, A. Gedanken, Sonochemical Preparation and Characterization of Nanocrystalline Copper Oxide Embedded in Poly(vinyl alcohol) and its Effect on Crystal Growth of Copper Oxide, Langmuir 17 (2001)1406-1410.

DOI: 10.1021/la001331s

Google Scholar

[10] R.V. Kumar, Y. Koltypin, Y.S. Cohen, D. Aurbach, O. Palchik, I. Felner, A. Gedanken, Preparation of amorphous magnetite nanoparticles embedded in polyvinyl alcohol using ultrasound radiation, J. Mater. Chem. 10 (2000)1125-1129.

DOI: 10.1039/b000440p

Google Scholar

[11] Y. G Sun, Y.N. Xia, Resonance in Large Noble Metal Clustes, Science 298 (2002) 2176-2179.

Google Scholar

[12] N.K. Chaki, S.G. Sudrik, H.R. Sonawane, K. Vijayamohanan, Single phase preparation of monodispersed silver nanoclusters using a unique electron transfer and cluster stabilising agent, triethylamine, Chem. Commun. 1 (2002), 76-77.

DOI: 10.1039/b107965b

Google Scholar

[13] A.P.O. Mullane, S.E. Dale, J.V. Macpherson, P.R. Unwin, Fabrication and electrocatalytic properties of polyaniline/Pt nanoparticle composites, Chem. Commun. 14 (2004) 1606-1607.

DOI: 10.1039/b404636f

Google Scholar

[14] S.H. Cho, S.M. Park, Electrochemistry of Conductive Polymers 39. Contacts between Conducting Polymers and Noble Metal Nanoparticles Studied by Current-Sensing Atomic Force Microscopy, J. Phys. Chem. B 110 (2006) 25656-25664.

DOI: 10.1021/jp0656781

Google Scholar

[15] M. Ocypa, M. Ptasinska, M. Michalska, K. Maksymiuk, E.A.H. Hall, Electroless silver deposition on polypyrrole and poly(3, 4-ethylenedioxythiophene): The reaction/diffusion balance, J. Electroanal. Chem. 596 (2006)157-168.

DOI: 10.1016/j.jelechem.2006.07.032

Google Scholar

[16] A. Lobnik, M. Cajlakovic, Sol–gel based optical sensor for continuous determination of dissolved hydrogen peroxide, Sens. Actuators B 74 (2001) 194-199.

DOI: 10.1016/s0925-4005(00)00733-4

Google Scholar

[17] X. Liu, Y. Xu, X. Ma, G. Li, A third-generation hydrogen peroxide biosensor fabricated with hemoglobin and Triton X-100, Sens. Actuators B 106 (2005) 284-287.

DOI: 10.1016/j.snb.2004.08.010

Google Scholar

[18] C. Fan, H. Wang, S. Sun, D. Zhu, G. Wagner, G. Li, Electron-Transfer Reactivity and Enzymatic Activity of Hemoglobin in a SP Sephadex Membrane, Anal. Chem. 73 (2001)2850-2854.

DOI: 10.1021/ac001397s

Google Scholar

[19] J. Zhang, M. Oyama, A hydrogen peroxide sensor based on the peroxidase activity of hemoglobin immobilized on gold nanoparticles-modified ITO electrode, Electrochim. Acta 50 (2004) 85-90.

DOI: 10.1016/j.electacta.2004.07.026

Google Scholar

[20] V.V. Shumyantseva, Y.D. Ivanov, N.F. Bistolas, W. Scheller, A.I. Archakov, U. Wollenberger, Direct Electron Transfer of Cytochrome P450 2B4 at Electrodes Modified with Nonionic Detergent and Colloidal Clay Nanoparticles, Anal. Chem. 76 (2004).

DOI: 10.1021/ac049927y

Google Scholar

[21] Z. Dai, S. Liu, H. Ju, Direct electron transfer of cytochrome c immobilized on a NaY zeolite matrix and its application in biosensing, Electrochim. Acta 49 (2004) 2139-2144.

DOI: 10.1016/j.electacta.2003.12.040

Google Scholar

[22] G.H. Wang, , L.M. Zhang, Using novel polysaccharide-silica hybrid material to construct an amperometric biosensor for hydrogen peroxide, J. Phys. Chem. B 110 (2006) 24864-24868.

DOI: 10.1021/jp0657078

Google Scholar

[23] A.K.M. Kafi, G. Wu, A. Chen, A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays, Biosens. Bioelectron. 24 (2008) 566-571.

DOI: 10.1016/j.bios.2008.06.004

Google Scholar

[24] V.G. Gavalas, N.A. Chaniotakis, Phosphate biosensor based on polyelectrolyte-stabilized pyruvate oxidase, Anal. Chim. Acta 427 (2001)271-277.

DOI: 10.1016/s0003-2670(00)01204-6

Google Scholar

[25] M.S. Lin, H.J. Leu, A Fe3O4‐Based Chemical Sensor for Cathodic Determination of Hydrogen Peroxide, Electroanalysis 17 (2005) 2068-(2073).

DOI: 10.1002/elan.200503335

Google Scholar

[26] L. Alfonta, A. Bardea, O. Khersonsky, E. Katz, I. Willner, Chronopotentiometry and Faradaic impedance spectroscopy as signal transduction methods for the biocatalytic precipitation of an insoluble product on electrode supports: routes for enzyme sensors, immunosensors and DNA sensors, Biosens. Bioelectron. 16 (2001).

DOI: 10.1016/s0956-5663(01)00231-7

Google Scholar

[27] M.J. Giz, S.L.A. Maranhao, R.M. Torresi, AFM morphological study of electropolymerised polyaniline films modified by surfactant and large anions, Electrochem. Commun. 2 (2000) 377-381.

DOI: 10.1016/s1388-2481(00)00041-2

Google Scholar