Photodegradation of Phenol over Flame-Made Sn-Doped ZnO Nanoparticles

Article Preview

Abstract:

Undoped ZnO and 0.5−5.0 at.% Sn-doped ZnO nanoparticles were synthesized by flame spray pyrolysis (FSP) using zinc naphthenate and tin (II) 2-ethylhexanoate dissolved in xylene as the precursors under a 5/5 (precursor/oxygen) flame condition. UV-Vis absorption characteristics of the samples were investigated for understanding and relating with the physiochemical characteristics in photocatalytic applications. Kinetic analyzes indicated that the photodegradation rates of phenol could be approximated as pseudo-first-order and zero-order kinetics in the case of undoped ZnO and Sn-doped ZnO nanoparticles respectively, according to the Langmuir-Hinshelwood model. The effect of Sn doping revealed the deterioration of the phenol photodegradation performance over ZnO-based catalysts, possibly due to the formation of a deep state in the ZnO band gap energy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-103

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.P. Schwarzenbach, T. Egli, T.B. Hofstetter, U. von Gunten, B. Wehrli, Global water pollution and human health, Annu. Rev. Env. Resour. 35 (2010) 109-136.

DOI: 10.1146/annurev-environ-100809-125342

Google Scholar

[2] W. Yang, S.T. Omaye, Air pollutants, oxidative stress and human health, Mutat. Res. Gen. Tox. En. 674 (2009) 45-54.

Google Scholar

[3] Z. Zhang, M.F. Hossain, T. Arakawa, T. Takahashi, Facing-target sputtering deposition of ZnO films with Pt ultra-thin layers for gas-phase photocatalytic application, J. Hazard. Mater. 176 (2010) 973-978.

DOI: 10.1016/j.jhazmat.2009.11.136

Google Scholar

[4] D. Lin, H. Wu, R. Zhang, W. Pan, Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers, Chem. Mater. 21 (2009) 3479-3484.

DOI: 10.1021/cm900225p

Google Scholar

[5] A. Hameed, T. Montini, V. Gombac, P. Fornasiero, Photocatalytic decolourization of dyes on NiO-ZnO nano-composites, Photoch. Photobio. Sci. 8 (2009) 677-682.

DOI: 10.1039/b817396f

Google Scholar

[6] R. Wang, J.H. Xin, Y. Yang, H. Liu, L. Xu, J. Hu, The characteristics and photocatalytic activities of silver doped ZnO nanocrystallites, Appl. Surf. Sci. 227 (2004) 312-317.

DOI: 10.1016/j.apsusc.2003.12.012

Google Scholar

[7] R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles, J. Hazard. Mater. 156 (2008) 194-200.

DOI: 10.1016/j.jhazmat.2007.12.033

Google Scholar

[8] S. Anandan, A. Vinu, K.L.P. Sheeja Lovely, N. Gokulakrishnan, P. Srinivasu, T. Mori, V. Murugesan, V. Sivamurugan, K. Ariga, Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension, J. Mol. Catal. A-Chem. 266 (2007).

DOI: 10.1016/j.molcata.2006.11.008

Google Scholar

[9] X. Qiu, L. Li, J. Zheng, J. Liu, X. Sun, G. Li, Origin of the enhanced photocatalytic activities of semiconductors: A case study of ZnO doped with Mg2+, J. Phys. Chem. C. 112 (2008) 12242-12248.

DOI: 10.1021/jp803129e

Google Scholar

[10] M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis, Chem. Rev. 93 (1993) 341-357.

Google Scholar

[11] F.K. Allah, S.Y. Abé, C.M. Núñez, A. Khelil, L. Cattin, M. Morsli, J.C. Bernède, A. Bougrine, M.A. del Valle, F.R. Díaz, Characterisation of porous doped ZnO thin films deposited by spray pyrolysis technique, Appl. Surf. Sci. 253 (2007).

DOI: 10.1016/j.apsusc.2007.05.055

Google Scholar

[12] C. -Y. Tsay, H. -C. Cheng, Y. -T. Tung, W. -H. Tuan, C. -K. Lin, Effect of Sn-doped on microstructural and optical properties of ZnO thin films deposited by sol-gel method, Thin Solid Films. 517 (2008) 1032-1036.

DOI: 10.1016/j.tsf.2008.06.030

Google Scholar

[13] M.R. Vaezi, S.K. Sadrnezhaad, Improving the electrical conductance of chemically deposited zinc oxide thin films by Sn dopant, Mater. Sci. Eng. B. 141 (2007) 23-27.

DOI: 10.1016/j.mseb.2007.05.010

Google Scholar

[14] S.Y. Li, P. Lin, C.Y. Lee, T.Y. Tseng, C.J. Huang, Effect of Sn dopant on the properties of ZnO nanowires, J. Phys. D Appl. Phys. 37 (2004) 2274-2282.

DOI: 10.1088/0022-3727/37/16/009

Google Scholar

[15] R. Deng, X. Zhang, E. Zhang, Y. Liang, Z. Liu, H. Xu, S. Hark, Planar defects in Sn-doped single-crystal ZnO nanobelts, J. Phys. Chem. C. 111 (2007) 13013-13015.

DOI: 10.1021/jp073668+

Google Scholar

[16] A. Bougrine, M. Addou, A. Kachouane, J.C. Bérnède, M. Morsli, Effect of tin incorporation on physicochemical properties of ZnO films prepared by spray pyrolysis, Mater. Chem. Phys. 91 (2005) 247-252.

DOI: 10.1016/j.matchemphys.2003.11.033

Google Scholar

[17] V. Bilgin, S. Kose, F. Atay, I. Akyuz, The effect of Sn concentration on some physical properties of zinc oxide films prepared by ultrasonic spray pyrolysis, J. Mater. Sci. 40 (2005) 1909-(1915).

DOI: 10.1007/s10853-005-1210-x

Google Scholar

[18] C. Wu, L. Shen, H. Yu, Q. Huang, Y.C. Zhang, Synthesis of Sn-doped ZnO nanorods and their photocatalytic properties, Mater. Res. Bull. 46 (2011) 1107-1112.

DOI: 10.1016/j.materresbull.2011.02.043

Google Scholar

[19] R. Mueller, L. Mädler, S.E. Pratsinis, Nanoparticle synthesis at high production rates by flame spray pyrolysis, Chem. Eng. Sci. 58 (2003) 1969-(1976).

DOI: 10.1016/s0009-2509(03)00022-8

Google Scholar

[20] K. Wetchakun, Sensing of acetone vapor by flame-made Sn/ZnO nanoparticles, Sensor Lett. 9 (2011) 299-302.

DOI: 10.1166/sl.2011.1468

Google Scholar

[21] N. Wetchakun, K. Chiang, R. Amal, S. Phanichphant, Synthesis and characterization of transition metal ion doping on the photocatalytic activity of TiO2 nanoparticles, 2nd IEEE International Nanoelectronics Conference. (2008) 43-47.

DOI: 10.1109/inec.2008.4585434

Google Scholar

[22] A. Escobedo Morales, E. Sanchez Mora, U. Pal, Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures, Rev. Mex. Fis. 53 (2007) 18-22.

Google Scholar

[23] S. Rehman, R. Ullah, A.M. Butt, N.D. Gohar, Strategies of making TiO2 and ZnO visible light active, J. Hazard. Mater. 170 (2009) 560-569.

DOI: 10.1016/j.jhazmat.2009.05.064

Google Scholar

[24] P. Shukla, I. Fatimah, S. Wang, H.M. Ang, M.O. Tadé, Photocatalytic generation of sulphate and hydroxyl radicals using zinc oxide under low-power UV to oxidise phenolic contaminants in wastewater, Catal. Today. 157 (2010) 410-414.

DOI: 10.1016/j.cattod.2010.04.015

Google Scholar

[25] O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid. State. Ch. 32 (2004) 33-177.

Google Scholar

[26] H. Benelmadjat, B. Boudine, O. Halimi, M. Sebais, Fabrication and characterization of pure and Sn/Sb-doped ZnO thin films deposited by sol-gel method, Opt. Laser. Technol. 41 (2009) 630-633.

DOI: 10.1016/j.optlastec.2008.09.011

Google Scholar

[27] S.C. Navale, I.S. Mulla, Photoluminescence and gas sensing study of nanostructured pure and Sn doped ZnO, Mater. Sci. Eng. C. 29 (2009) 1317-1320.

DOI: 10.1016/j.msec.2008.09.050

Google Scholar