[1]
Y. Li, X. Lin, Y. Wang, J. Luo and W. Sun, Preparation and Characterization of Porous Yttrium Oxide Powders with High Specific Surface Area, J. Rare. Earths 24 (2006) 34-38.
DOI: 10.1016/s1002-0721(06)60061-6
Google Scholar
[2]
W. Forstner, Metal Pollution in the Aquatic Environment, Springer, Berlin Heindelberg, New York, Tokyo, (1984). p.18–20.
Google Scholar
[3]
D. Benefield, J. Judkins and B. Weand, Process Chemistry for Water and Wastewater Treatment, Prentice-Hall Inc, (1999), p.307–365, 457–478.
Google Scholar
[4]
N. Li and K. Yanagisawa, Controlling the Morphology of Yttrium Oxide Through Different Precursors Synthesized by Hydrothermal Method. J. Solid State Chem. 181 (2008)1738-1743.
DOI: 10.1016/j.jssc.2008.03.031
Google Scholar
[5]
C. Hu and Z. Gao, Synthesis of Y2O3 with Nestlike Structures, J. Mater. Sci. 41 (2006) 6126- 6129.
DOI: 10.1007/s10853-006-0450-8
Google Scholar
[6]
Y. He, Y. Tian and, Y. Zhu, Large-scale Synthesis of Luminescent Y2O3: Eu Nanobelts. Chem. Lett. 32 (2003) 862-863.
DOI: 10.1246/cl.2003.862
Google Scholar
[7]
J. Otsu and Y. Oshima, New Approaches to the Preparation of Metal or Metal Oxide Particles on the Surface of Porous Materials Using Supercritical Water: Development of Supercritical Water Impregnation Method, J. Supercrit. Fluid 33 (2005) 61-67.
DOI: 10.1016/s0896-8446(04)00098-1
Google Scholar
[8]
D. Zhao, E. Han, X. Wu and H. Guan, Hydrothermal Synthesis of Ceria Nanoparticles Supported on Carbon Nanotubes in Supercritical Water, Mater. Lett. 60 (2006) 3544–3547.
DOI: 10.1016/j.matlet.2006.03.049
Google Scholar
[9]
T. Adschiri, K. Kanazawa and K. Arai, Rapid and Continuous Hydrothermal Synthesis of Metal Oxide Particles in Supercritical Water, J. Am. Ceram. Soc. 75 (1992) 1019-1022.
DOI: 10.1111/j.1151-2916.1992.tb04179.x
Google Scholar
[10]
T. Adschiri, Y. Hakuta, K. Sue and K. Arai, Hydrothermal Synthesis of Metal Oxide Nanoparticles at Supercritical Conditions, J. Nanopart. Res. 3, (2001) 227-235.
Google Scholar