Microstructural Investigation of SiOx Thin Films Grown by Reactive Sputtering on (001) Si Substrates

Article Preview

Abstract:

In the Current Study, the Structural Characteristics of Siox Thin Films Grown by Magnetron Sputtering on Si Substrates Are Reported. High Resolution Transmission Electron Microscopy Revealed the Formation of Amorphous Siox Films for the as-Deposited Samples, as Well as the Ones Annealed in Ambient Air for 30 Min at 950oC and of Si Nanocrystals, Embedded in Amorphous Siox, after Ar Annealing for 1-4 Hours at 1000oC. the Nanocrystals, with Sizes up to 6 Nm, Predominately Exhibit {111} Lattice Planes. Energy-Dispersive X-Ray Analysis Showed that the Si/O Ratio Is between 0.5-1, I.e. the Amorphous Films Comprise of a Mixture of Sio2 and Sio. Phase Images and Corresponding Strain Maps Created Using Fourier Filtering Revealed a Uniform Contrast in the Nanocrystals, which Shows that the Si Lattice Constant Does Not Vary Significantly. the Residual Strain Variations, around 4%, May Account for the Possible Existence of a Small Percentage of Highly Disordered Si or Siox Residual Clusters inside the Regular Si Matrix, in Full Agreement with Photoluminescence Measurements Performed on the same Materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-156

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Perálvarez, J. Carreras, J. Barreto, A. Morales, C. Domínguez, B. Garrido, Efficiency and reliability enhancement of silicon nanocrystal field-effect luminescence from nitride-oxide gate stacks, Appl. Phys. Lett. 92 (2008). 241104.

DOI: 10.1063/1.2939562

Google Scholar

[2] F. Gourbilleau, C. Ternon, D. Maestre, O. Palais, C. Dufour, Silicon-rich SiO2/SiO2 multilayers: A promising material for the third generation of solar cell J. Appl. Phys. 106, 013501 (2009).

DOI: 10.1063/1.3156730

Google Scholar

[3] D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, Saunders College Publishing, Philadelphia, (1998).

Google Scholar

[4] J. Singh, Semiconductor Optoelectronics: Physics and Technology, McGraw-Hill Education (ISE Editions), USA, (1995).

Google Scholar

[5] T. Shimizu–Iwayama, K. Fujita, S. Nakao, K. Saitoh, T. Fujita, N. Itoh, Visible photoluminescence in Si+-implanted silica glass, J. Appl. Phys. 75(12) (1994) 7779-7783.

DOI: 10.1063/1.357031

Google Scholar

[6] D. Gautam, E. Koyanagi, T. Uchino, Photoluminescence properties of SiOx thin films prepared by reactive electron beam evaporation from SiO and silica nanoparticles, J. Appl. Phys. 105, 073517 (2009).

DOI: 10.1063/1.3104772

Google Scholar

[7] M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, J. Bläsing, Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach, Appl. Phys. Lett., 80(4) (2002) 661-663.

DOI: 10.1063/1.1433906

Google Scholar

[8] Z.H. Lu, D.J. Lockwood, J.M. Baribeau, Quantum confinement and light emission in SiO2/Si superlattices, Nature 378 (1995) 258-260.

DOI: 10.1038/378258a0

Google Scholar

[9] V. Kapaklis, C. Politis, P. Poulopoulos, P. Schweiss, Photoluminescence from silicon nanoparticles prepared from bulk amorphous silicon monoxide by the disproportionation reaction, Appl. Phys. Lett. 87, 123114 (2005).

DOI: 10.1063/1.2043246

Google Scholar

[10] S.D. Pappas, S. Grammatikopoulos, P. Poulopoulos, V. Kapaklis, A. Delimitis, D. Trachylis, C. Politis, A cost-effective growth of SiOx thin films by reactive sputtering: Photoluminescence tuning, J. Nanosci. Nanotechnol. 11(4) (2011) 3684-3687.

DOI: 10.1166/jnn.2011.3814

Google Scholar

[11] V. Kapaklis, S.D. Pappas, P. Poulopoulos, D. Trachylis, P. Schweiss, C. Politis, Structure and magnetic properties of hcp and fcc nanocrystalline thin Ni films and nanoparticles produced by radio frequency magnetron sputtering, J. Nanosci. Nanotechnol. 10 (2010).

DOI: 10.1002/chin.201143201

Google Scholar

[12] V. Kapaklis, P. Poulopoulos, V. Karoutsos, Th. Manouras, C. Politis, Growth of thin Ag films produced by radio frequency magnetron sputtering, Thin Solid Films 510 (2006) 138-142.

DOI: 10.1016/j.tsf.2005.12.311

Google Scholar

[13] M. Björck, G. Andersson, GenX: an extensible X-ray reflectivity refinement program utilizing differential evolution, J. Appl. Crystallogr. 40 (2007) 1174-1178.

DOI: 10.1107/s0021889807045086

Google Scholar

[14] M. Mamiya, H. Takei, M. Kikuchi, C. Uyeda, Preparation of fine silicon particles from amorphous silicon monoxide by the disproportionation reaction, J. Cryst. Growth 229 (2001) 457-461.

DOI: 10.1016/s0022-0248(01)01202-7

Google Scholar

[15] M. Mamiya, M. Kikuchi, H. Takei, Crystallization of fine silicon particles from silicon monoxide, J. Cryst. Growth 237-239 (2002) 1909-(1914).

DOI: 10.1016/s0022-0248(01)02244-8

Google Scholar

[16] M.J. Hytch, E. Snoeck, R. Kilaas, Quantitative measurement of displacement and strain fields from HREM micrographs, Ultramicroscopy 74 (1998) 131-146.

DOI: 10.1016/s0304-3991(98)00035-7

Google Scholar

[17] M.S. Valipa, S. Sriraman, E.S. Aydil, D. Maroudas, Hydrogen-induced crystallization of amorphous Si thin films. II. Mechanisms and energetics of hydrogen insertion into Si–Si bonds, J. Appl. Phys. 100(5) (2006) 053515.

DOI: 10.1063/1.2229429

Google Scholar

[18] L.X. Yi, H.R. Scholz, M. Zacharias, Si rings, Si clusters and Si nanocrystals-different states of ultrathin SiOx layers, Appl. Phys. Lett. 81(22) (2002) 4248-4250.

DOI: 10.1063/1.1525051

Google Scholar

[19] N. M. Park, C. J. Choi, T. Y. Seong, and S. J. Park, Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride, Phys. Rev. Lett. 86 (2001)1355-1357.

DOI: 10.1103/physrevlett.86.1355

Google Scholar