Synthesis, Structural, Electrical, Magnetic and Dielectric Spectroscopic Characterization of C-Er2Si2O7

Article Preview

Abstract:

The Polymorphic Er2Si2O7 Is Synthesized by Solid State Double Sintering Method. Structural and Morphological Characterizations Have Been Performed Using X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The Electrical Characterization Has Been Performed by Two Probe Method as a Function of Temperature. the Dielectric Spectroscopic Measurements of Polymorphic Er2Si2O7 Are Performed in the Temperature Range 300-555 K and Frequency Range 3 kHz to 1 MHz. the dc Electrical Transport Data Are Analyzed According to Mott’s Variable-Range Hopping. The ac Conductivity σac(ω) Is Obtained through the Dielectric Spectroscopic Measurements. the ac Conductivity Obeys Power Law which Can Be Expressed as σac (ω) = B ωs, where S Is Slope and it Determines the ac Electrical Transport Phenomenon. the ac Electrical Transport Data and its Variation with Temperature in this Rare Earth Formulation Are Well Discussed. the Magnetic Behavior of Synthesized Material Is Analyzed and Confirmed that Material Have Non-Magnetic Behavior with Coercivity (Hc) 842 Oe. while the Values of Magnetic Saturation (MS) and Remanace (Mr) Were Found in Range 3.90emu/g and 1.07emu/g.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-98

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Kim, D. K. Shin, E. C. Shin, H. H. Seo, J. S. Lee, J. Mater. Chem. 21 (2011)2940-2949.

Google Scholar

[2] C. Bharti,T. P. Sinha, J. SolidState Sc. 12 (2010)498-502.

Google Scholar

[3] D. Jiyan, X. Yuan, H. Pengde, Z. Qitu, J. Rare Earth. 28 (2010) 765.

Google Scholar

[4] I. Z. Mitrovic, S. Hall, J. Tel. and Inf. Tech. (2009) 51-60.

Google Scholar

[5] A. Maqsood, I. Haq, J. Mater. Sci. Lett. 6 (1987)1095-1097.

Google Scholar

[6] A. Maqsood, B.M. Wanklyn, G. Garton, J. Cryst. Growth. 46 (1979) 671.

Google Scholar

[7] J. Ito, H. Johnson, Am. Mineralogist. 53 (1968) (1940).

Google Scholar

[8] J. Felshe, J. Less. Common Metals 21 (1970)1.

Google Scholar

[9] J. Felshe, Structure and Bonding, Springer, New York, 1 (1973)99.

Google Scholar

[10] I.H. Gul, A.Z. Abbasi, F. Amin, M.A. Rehman, A. Maqsood, J. Magn. Magn. Mater. 311 (2007) 494.

Google Scholar

[11] M. Fadel, A.A. Nigim, H. T Elshair, Vacuum, 46 (1995)1279.

Google Scholar

[12] A.A. Dakhel, Cry. Res. Tech. 41 (2006)800-802.

Google Scholar

[13] N.F. Mott, Philos. Mag. 22 (1970) 7.

Google Scholar

[14] N.F. Mott, E.A. Davis, Philos. Mag. 22 (1970) 903.

Google Scholar

[15] N.F. Mott, E.A. Davis, Electronic processes in nanocrystalline materials, Clarendon, Oxford(1979).

Google Scholar

[16] A. Ganguly, S.K. Mandal, S. Chaudhary, A.K. Pal, J. Appl. Phys. 90 (2001) 5652.

Google Scholar

[17] B. Tareev, Physics of dielectric materials, Mir Publishers, Moscow. (1979) 107.

Google Scholar

[18] J. C. Giuntini, J. V. Zanchetta, J. Non-Cryst. Solids. 34 (1979)419-424.

Google Scholar

[19] J. M. Stevels, The electrical properties of glasses, Hantbuch der Physik. (1957)350.

Google Scholar

[20] S.R. Elliot, Adv. Phys. 36 (1987) 135-218.

Google Scholar

[21] M.A. Afifi, A.E. Bekheet, E.A. Elwahhab, H.E. Atyia, Vacuum. 61 (2001) 9-17.

DOI: 10.1016/s0042-207x(00)00416-4

Google Scholar

[22] S. Bhattacharyya, S.K. Saha, M. Chakravorty, B.M. Mandal, D. Chakravorty, K. Goswami, J. Polym. Sci. Polym. Phys. 39 (2001) 1935-(1941).

DOI: 10.1002/polb.1168

Google Scholar

[23] C. Karthik, K. B. R. Varmaa, J. Phys. Chem. Solids. 67 (2006) 2437.

Google Scholar

[24] S.A. Mazen, A. Elfalaky, S.F. Mansour, Phys Status Solidi B (1997) 201-449.

Google Scholar

[25] C. Angell, Annu. Rev. Phys. Chem. (1992)43-693.

Google Scholar

[26] A.K. Jonsher, Dielectric relaxation in solids, Chelsea Dielectric Press, London, (1983) 223.

Google Scholar

[27] S.R. Elliot, Phil. Mag. Vol. 36 (1977)1291.

Google Scholar

[28] S. Hazara, A. Ghosh, Phil. Mag. B. 74 (1966) 235.

Google Scholar

[29] M. M. El-Nahass, H.M. Zeyada, M.M. El-Samanoudy, E.M. El-Menyaway, J. Phys. Condens. Matter. 18 (2006) 5163-5173.

DOI: 10.1088/0953-8984/18/22/016

Google Scholar

[30] F. Yakuphanoglu, Y. Aydogdu, U. Schatzschneider, E. Rentschler: Solid State Commun. 128 (2003) 63-67.

Google Scholar

[31] I.G. Austin, N.F. Mott, Adv. Phys. 18 (1969) 41-102.

Google Scholar

[32] M. Pollak, Phil. Mag. 23 (1971) 519.

Google Scholar

[33] A.R. Long, Adv. Phys. 31 (1982) 553.

Google Scholar

[34] M. Pollak, G.E. Pike, Phys. Rev. Lett. 28 (1972).

Google Scholar

[35] G. E. Pike, Phys. Rev. B. 6 (1972)1572.

Google Scholar

[36] M.S. Aziz, Y.A. Aggour, Polym. Test. 18 (1999) 511-521.

Google Scholar