Deposition of ITO Thin Films onto PMMA Substrates for Waveguide Based Biosensing Devices

Article Preview

Abstract:

Biosensors’ research filed has clearly been changing towards the production of multifunctional and innovative design concepts to address the needs related with sensitivity and selectivity of the devices. More recently, waveguide biosensors, that do not require any label procedure to detect biomolecules adsorbed on its surface, have been pointed out as one of the most promising technologies for the production of biosensing devices with enhanced performance. Moreover the combination of optical and electrochemical measurements through the integration of transparent and conducting oxides in the multilayer structures can greatly enhance the biosensors’ sensitivity. Furthermore, the integration of polymeric substrates may bring powerful advantages in comparison with silicon based ones. The biosensors will have a lower production costs being possible to disposable them after use (“one use sensor chip”). This research work represents a preliminary study about the influence of substrate temperature on the overall properties of ITO thin films deposited by DC magnetron sputtering onto 0,5 mm thick PMMA sheets.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-83

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.P. Chambers, B.P. Arulanandam, L.L. Matta, A. Weis, J.J. Valdes, Biosensor recognition elements. Current Issues of Molecular Biology 10 (2008), 1-12.

Google Scholar

[2] X. Fan, I M. White, S.I. Shopova, H. Zhu, J. D. Suter and Y. Sun, Sensitive optical biosensors for unlabeled targets: A review, Analytical Chimica Acta 620 (2008) 8-26.

DOI: 10.1016/j.aca.2008.05.022

Google Scholar

[3] A. Densmore, D. -X. Xu, S. Janz, P. Waldron, J. Lapointe, T. Mischki, G. Lopinski, A. Delâge, J.H. Scmid and P. Cheben, Sensitive Label-Free Biomolecular Detection Using Thin Silicon Waveguides, Advances in Optical Technologies (2008).

DOI: 10.1155/2008/725967

Google Scholar

[4] R. Horváth , L. R Lindvold and N. B Larsen, Fabrication of all-polymer freestanding waveguides, Journal of Micromechanics and microengineering, 13 (2003) 419–424.

DOI: 10.1088/0960-1317/13/3/310

Google Scholar

[5] C. A. Mills, E. Martinez, A. Errachid, G. Gomila, A. Samsó, and J. Samitier, Small Scale Structures. The Fabrication of Polymeric Nanostructures for Biomedical Applications using Pattern Replication Techniques, Contributions to science 3(1): 47-56 (2005).

Google Scholar

[6] C.A. Mills, J. G. Fernandez, A. Errachid, J. Samitier, The use of high glass temperature polymers in the production of transparent, structured surfaces using nanoimprint lithography Microelectronic Engineering. 85 (2008) 1897–(1901).

DOI: 10.1016/j.mee.2008.06.014

Google Scholar

[8] Ch. Sujatha, G. Mohan Rao, S. Uthanna, Characteristics of indium tin oxide films deposited by bias magnetron sputtering, Materials Science and Engineering, B 94 (2002) 106-110.

DOI: 10.1016/s0921-5107(02)00090-9

Google Scholar

[9] V. Teixeira, H. N. Cui, L.J. Meng, E. Fortunato, and R. Martins. Amorphous ITO thin films prepared by DC sputtering for electrochromic applications Thin Solid Films , 420–421 (2002) 70–75.

DOI: 10.1016/s0040-6090(02)00656-9

Google Scholar

[10] J. S. Kim, , M. Granstrom, and R.H. Friend. Journal of Applied Physics, 84 (1998) 6869.

Google Scholar

[11] E. Shanthi, A. Bannerjee, and V. Dutta. Annealing characteristics of tin oxide films prepared by spray pyrolysis  Thin Solid Films, 71 (1980) 237.

DOI: 10.1016/0040-6090(80)90160-1

Google Scholar

[12] J.C. Jin, and I. Hamberg. Applied Physics Letters , 57 (1987) 149.

Google Scholar

[13] N. Danson, I. Safi, G.W. Hall, and R.P. Howson. Techniques for the sputtering of optimum indium-tin oxide films on to room-temperature substrates  Surface Coating Technology, 99 (1998) 147.

DOI: 10.1016/s0257-8972(97)00436-2

Google Scholar

[14] M. Alam, and D. Cameron. Optical and electrical properties of transparent conductive ITO thin films deposited by sol–gel process  Thin Solid Films, 377 (2000) 455.

DOI: 10.1016/s0040-6090(00)01369-9

Google Scholar

[15] K. Maki, N. Komiya, and A. Suzuki. Fabrication of thin films of ITO by aerosol CVD Thin Solid Films, 445 (2003) 224.

DOI: 10.1016/j.tsf.2003.08.021

Google Scholar

[16] Cui, H-N., V. Teixeira, and A. Monteiro. Microstructure study of indium tin oxide thin films by optical methods Vacuum, 67 (2002) 589–594.

DOI: 10.1016/s0042-207x(02)00236-1

Google Scholar

[17] Lee, J., H. Junga, D. Limb, and K. Yangb. Effects of bias voltage on the properties of ITO films prepared on polymer substrates  Thin Solid Films, 480–481 (2005) 157– 161.

DOI: 10.1016/j.tsf.2004.11.144

Google Scholar

[18] J. O. Carneiro, V. Teixeira, A. João, A. Magalhães, C. Tavares Study of Nd-doping effect and mechanical cracking on photoreactivity of TiO2 thin films  Vacuum. 82 (2008) 1475–1481.

DOI: 10.1016/j.vacuum.2008.03.013

Google Scholar

[19] S.H. Mohamed, F.M. El-Hossary, G.A. Gamal, and M.M. Kahlid. Acta Physica Polonia A, 115 (2009) 704-708.

DOI: 10.12693/aphyspola.115.704

Google Scholar

[20] Monteiro, A. Revestimentos multicamada PVD com comportamento electrocrómico, Tese de Mestrado. Braga: Universidade do Minho, (2004).

Google Scholar