Synthesis and Characterization of Si Nanoparticles Obtained on Sonication of Porous Silicon Multilayer Films

Article Preview

Abstract:

Synthesis of Si quantum dots (QDs), useful for multi-junction crystalline Si solar cells, using porous Silicon (PS) is presented in this paper. Four types of freestanding PS structures are fabricated by anodization method with modulation of current density between two levels. The level-1 current density is kept constant at 20 mA/cm2 (for reference monolayer structure - sample A) and 10 mA/cm2 (for all multilayer structures samples B, C, D). The level-2 is varied between 0 to 50 mA/cm2 (0, 20, 30, 50 mA/cm2 as sample A, B, C and D respectively). In order to obtain Si QDs from PS films, the films are subjected to sonication (120 W, 42 kHz) for 6 hours. HRTEM images confirm presence of Si nanoparticles in the range of 2 to 8 nm. Various spectroscopic analyses of Si nanoparticles are performed in order to evaluate quantum confinement behavior and surface modification observed during sonication. Analysis of de-convoluted Raman peaks shows frequency downshift and increase in full width half maximum due to formation of QDs. After sonication, PL spectroscopy indicates blue shift from 2.54 eV (sample A) to 2.85 eV (sample D_6HR), similar to the observations made by UV-Vis spectroscopy. FTIR spectra show oxidation of Si QDs during sonication. Spectroscopic and microscopic results are explained using quantum confinement and surface modification phenomenon.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-25

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Shockley W., Queisser H. J,. Detailed balance limit of efficiency of p-n junction solar cells. 1960, Vol. E 14, pp.510-520.

Google Scholar

[2] Conibeer G., Green M., Cho E. -C., König D., Cho Y. -H., Fangsuwannarak T., Scardera G., et. al. Silicon Quantum Dot Nanostructures for Tandem Photovoltaic Cells. 2008, Vol. 516, pp.6748-6756.

DOI: 10.1016/j.tsf.2007.12.096

Google Scholar

[3] Švrček V., Slaoui A., Muller J. -C.,. Silicon nanocrystals as light converter for solar cells. 2004, Vols. 451-452, pp.384-388.

DOI: 10.1016/j.tsf.2003.10.133

Google Scholar

[4] Nozik, A. J. Quantum dot solar cells. 2002, pp.115-120.

Google Scholar

[5] Wu M.H., Mu R., Ueda A., Henderson D.O., Vlahovic B. Production of silicon quantum dots for photovoltaic applications by picoseconds Pulsed Laser Ablation. 2005, Vol. B 116, pp.273-277.

DOI: 10.1016/j.mseb.2004.06.022

Google Scholar

[6] Lau H.W., Tan O.K., Ooi B.C., Liu Y., Chen T.P., Lu D. Characteristics of mechanically milled silicon nanocrystals embedded in TEOS thin films. 2006, Vol. 288, pp.92-95.

DOI: 10.1016/j.jcrysgro.2005.12.042

Google Scholar

[7] Volodin V.A., Efremov M.D., Gritsenko V.A.,. Raman Spectroscopy Investigation of Silicon Nanocrystal Formation in Silicon Nitride Films. 1997, Vols. 57-58, pp.501-506.

DOI: 10.4028/www.scientific.net/ssp.57-58.501

Google Scholar

[8] Garrido Fernandez, B., López M., García C., Pérez-Rodríguez A., Morante J.R., Bonafos C., Carrada M., Claverie A. Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2. January 2002, Vol. 91, 2, pp.798-807.

DOI: 10.1063/1.1423768

Google Scholar

[9] . Kale P.G., Solanki C.S., Synthesis of si nanoparticles from freestanding porous silicon (PS) film using ultrasonication, Conference Record of the IEEE Photovoltaic Specialists Conference 2010. pp.3692-3697.

DOI: 10.1109/pvsc.2010.5617016

Google Scholar

[10] Kale P.G., Gangal A.C., Edla R., Sharma P. Investigation of hydrogen storage behavior of silicon nanoparticles. 2011. Article in press, doi: 10. 1016/j. ijhydene. 2011. 04. 054.

Google Scholar

[11] C.S. Solanki. Study of Porous Silicon Layer Transfer for Applications In Thin Film Monocrystalline Silicon Solar Cells. Department of Electrical Engineering, Katholieke University. Leuven, Belgium, : Ph.D. Thesis, (2004).

Google Scholar

[12] Loni A., Canham L.T., Berger M.G., Arens-Fischer R., Munder H, LuthH., et. al. Porous silicon multilayer optical waveguides. Thin Solid Flms. 1996, Vol. 276, pp.143-146.

DOI: 10.1016/0040-6090(95)08075-9

Google Scholar

[13] Lehmann V. and Gosele U. Porous silicon formation: A quantum wire effect. Applied Physics Letters. 1991, Vol. 58, 8, pp.856-858.

DOI: 10.1063/1.104512

Google Scholar

[14] Lockwood D.J., Wang A., Bryskiewicz B. Optical absorption for quantum confinement effects in porous silicon. 1994, Vol. 89, 7, pp.587-589.

DOI: 10.1016/0038-1098(94)90169-4

Google Scholar

[15] Koshida N., Kojima A., Migita T., Nakajima Y.,. Multifunctional properties of nanocrystalline porous silicon as a Quantum Confined Material. 2002, Vol. C 19, pp.285-289.

DOI: 10.1016/s0928-4931(01)00400-3

Google Scholar

[16] Anto Pradeep J., Gogoi P., Agarwal P.,. Single and multilayer porous silicon structures for photonic applications. 2008, Vol. 354, pp.789-797.

DOI: 10.1016/j.jnoncrysol.2007.09.092

Google Scholar

[17] Volk J., Fried M., Tóth A.L., Bársony I. The ideal vehicle for optical model development: Porous silicon multilayers. 2004, Vols. 455-456, pp.535-539.

DOI: 10.1016/j.tsf.2004.01.025

Google Scholar

[18] Qian M., Bao X.Q., Wang L.W., Lu X., Shao J., Chen X.S. Structural Tailoring of Multilayer Porous Silicon for Photonic Crystal Application. 2006, Vol. 292, pp.347-350.

DOI: 10.1016/j.jcrysgro.2006.04.033

Google Scholar

[19] Solanki C.S., Bilyalov R.R., Poortmans J., Beaucarne G., Van Nieuwenhuysen K., Nijs J., Mertens R. Characterization of free-standing thin crystalline films on porous silicon. 2004, pp.451-452.

DOI: 10.1016/j.tsf.2003.11.157

Google Scholar

[20] Shiraishi K., Nagase M., horiguchi S., Kageshima H., Uematsu M., Takahashi Y., Murase K. Designing of silicon effective quantum dots by using the oxidation-induced strain : a theorotical approach. Physica E. 2000, Vol. 7, pp.337-341.

DOI: 10.1016/s1386-9477(99)00336-7

Google Scholar

[21] Ossadnik Ch., Vepřek S., Gregora I. Applicability of Raman scattering for the characterization of nanocrystalline silicon. 1999, Vol. 337, pp.148-151.

DOI: 10.1016/s0040-6090(98)01175-4

Google Scholar

[22] Xia H., He Y.L., Wang L.C., Zhang W., Liu X.N., Zhang X.K., Feng D., Jackson H.E. Phonon mode study of Si nanocrystals using micro-Raman spectroscopy. 1995, Vol. 78, 11, pp.6705-6708.

DOI: 10.1063/1.360494

Google Scholar

[23] Y. Kanemitsu, et. al. Microstructure and optical properties of freestanding porous silicon films : Size dependance of absorption spectra in Si nanometer-sized crystallites. 1993, Vol. 48, 4, pp.48-52.

DOI: 10.1103/physrevb.48.2827

Google Scholar

[24] Biteen J.S., Lewis N.S., Atwater H.A., Polman A.,. Size-dependent oxygen-related electronic states in silicon nanocrystals. Applied physics letters. 2004, Vol. 84, 26, pp.5389-5391.

DOI: 10.1063/1.1765200

Google Scholar

[25] Kumar S., Dixit P.N., Rauthan C.M.S., Parashar A., Gope J.,. Effect of Power on the growth of nanocrystalline silicon films. 2008, Vol. 20, p.335215 (7pp).

DOI: 10.1088/0953-8984/20/33/335215

Google Scholar

[26] Schoenfeld O., Zhao X., Christen J., Hempel T., Nomura S., Aoyagi Y.,. Formation of Si Quantum Dots in nanocrystalline silicon. 1996, Vol. 40, 1-8, pp.605-608.

DOI: 10.1016/0038-1101(95)00371-1

Google Scholar

[27] Lee J., Chakrabarty K., Yi J. Photoluminescence and morphological studies of porous silicon. 2003, Vol. 211, pp.373-378.

DOI: 10.1016/s0169-4332(03)00305-2

Google Scholar

[28] Kim T. -Y., Park N. -M., Kim K. -H., Sung G.Y., Ok Y. -W., Seong T. -Y., Choi C. -J.,. Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films. November 2004, Vol. 85, 22, pp.5355-5357.

DOI: 10.1063/1.1814429

Google Scholar

[29] Rezgui B., Sibai A., Nychyporuk T., Lemiti M., Brémond G. Photoluminescence and optical absorption properties of silicon quantum dots embedded in Si-rich silicon nitride matrices. (2009).

DOI: 10.1016/j.jlumin.2009.04.043

Google Scholar

[30] Xu D., Guo G., Gui L., Tang Y., Zhang B.R., Qin G.G. Optical Properties and luminescence mechanism of oxidised free standing porous silicon films. 1999, Vol. 86, 4, p.2066-(2072).

DOI: 10.1063/1.371010

Google Scholar

[31] Zi J., Büscher H., Falter C., Ludwig W., Zhang K., Xie X. Raman Shifts in Si nanocrystals. 1996, pp.200-203.

Google Scholar

[32] Ogata Y.H., Tsuboi T., Sakka T., Naito S.,. Oxidation of porous silicon in dry and wet environments under mild temperature conditions. Journal of porous materials. 2000, Vol. 7, pp.63-66.

DOI: 10.1023/a:1009694608199

Google Scholar