Preparation and Characterization of Intermetallic Nanoparticles for Lithium Ion Batteries

Article Preview

Abstract:

Nanoparticles based on tin compounds and alloys have been prepared by using the polyol and/or sonochemical methods. Thus, nanoparticulated Fe1-xCoxSn2 solid solutions were prepared by using the polyol method or, alternatively, a combination of the polyol and the sonochemical methods, and the Rietveld refinements of the XRD patterns confirm the formation of the solid solutions solutions. Pure or pyrolyzed polyacrylonitrile (PAN) can be used to create a matrix that encapsulate the metallic particles and improve the electrochemical cycling behavior. Thus, MSn2@PAN (where M=Fe or Co) have been prepared by using dimethylformamide like solvent of PAN and applying high-intensity ultrasonication to achieve small particle size, poor crystallinity and high dispersion. The very small particles of MSn2 exhibit higher tendency to be oxidized in air atmosphere than the larger particles. The very small particle size of the alloy and the organic phase (PAN) contribute to stabilize the interfaces and the contacts in the electrode, as is evidenced by the electrochemical cycling and the impedance spectra. A model is proposed for the electrochemical behavior of the MSn2@PAN electrode materials. MSn2@C materials can be prepared throughout the pyrolysis of the PAN molecules matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-65

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U.G. Nwokeke, R. Alcántara, J.L. Tirado, R. Stoyanova, M. Yoncheva, E. Zhecheva, Electron paramagnetic resonance, X-ray Diffraction, Mössbauer spectroscopy, and electrochemical studies on nanocrystalline FeSn2 obtained by reduction of salts in tetraethylene glycol, Chem. Mater. 22 (2010).

DOI: 10.1021/cm902898k

Google Scholar

[2] U.G. Nwokeke, A.V. Chadwick, R. Alcántara, M. Alfredsson, J.L. Tirado, Nanocrystalline Fe1-xCoxSn2 solid solutions prepared by reduction of salts in tetraethylene glycol, J. Alloys Compds. 509 (2011) 3074-3079.

DOI: 10.1016/j.jallcom.2010.11.202

Google Scholar

[3] R. Alcántara, P. Lavela, C. Pérez-Vicente, J.L. Tirado, Nanostructured electrodes for lithium ion batteries, in: V.V. Kharton (Ed. ), Solid State Electrochemistry II,. Wiley-VCH, Weinheim, 2011, pp.383-413.

DOI: 10.1002/9783527635566.ch8

Google Scholar

[4] F. Nacimiento, R. Alcántara, J.L. Tirado, Comparative study of composite electrodes containing tin, polyacrylonitrile and cobalt or iron, J. Power Sources 196 (2011) 2893-2898.

DOI: 10.1016/j.jpowsour.2010.11.034

Google Scholar

[5] F. Nacimiento, R. Alcántara, J.L. Tirado, PAN-encapsulated nanocrystalline CoSn2 particles as negative electrode active material for lithium-ion batteries, J. Electrochem. Soc. 157 (2010) A666-A671.

DOI: 10.1149/1.3368696

Google Scholar

[6] U.G. Nwokeke, R. Alcántara, J.L. Tirado, R. Stoyanova, E. Zhecheva, The electrochemical behavior of low-temperature synthesized FeSn2 nanoparticles as anode materials for Li-ion batteries, J. Power Sources 196 (2011) 6768-6771.

DOI: 10.1016/j.jpowsour.2010.10.071

Google Scholar

[7] N.H. Chou, R.E. Schaak, Shape-controlled conversion of β-Sn nanocrystals into intermetallic M-Sn (M=Fe, Co, Ni, Pd) nanocrystals, J. Am. Chem. Soc. 129 (2007) 7339-7345.

DOI: 10.1021/ja069032y

Google Scholar

[8] F. Nacimiento et al., Nanocrystalline CoSn2-carbon composite electrode prepared by using sonochemistry, Ultrason. Sonochem. (2011), doi: 10. 1016/j. ultrasonch. 2011. 06. 014.

Google Scholar

[9] U.G. Nwokeke et al, FeSn2-polyacrylonitrile electrode obtained by using high-intensity ultrasonication, Electrochem. Solid-State Lett. (2011), doi: 10. 1149/1. 3611014.

DOI: 10.1149/1.3611014

Google Scholar

[10] Y. Huai, J. Gao, Z. Deng, J. Suo, Preparation and characterization of a special structural poly(acrylonitrile)-based microporous membrane for lithium-ion batteries, Ionics 16 (2010) 603-611.

DOI: 10.1007/s11581-010-0431-4

Google Scholar

[11] K. S. Perera, M.A.K.L. Dissanayake, S. Skaarup, K. West, Application of polyacrylonitrile-based polymer electrolytes in rechargeable lithium batteries, J. Solid State Electrochem. 12 (2008) 873–877.

DOI: 10.1007/s10008-007-0479-x

Google Scholar

[12] G. Lecayon, Y. Bouizem, C. Le Gressus, C. Reynaud, C. Boiziau, C. Juret, Grafting and growing mechanism of polymerized organic films onto metallic surfaces, Chem. Phys. Lett. 91 (1982) 506-510.

DOI: 10.1016/0009-2614(82)83100-x

Google Scholar