[1]
L.S. Zhang, W.Z. Wang, L. Zhou, H.L. Xu, Bi2WO6 nano- and microstructures: shape control and associated visible-light-driven photocatalytic activities, Small 3 (2007) 1618 -1625.
DOI: 10.1002/smll.200700043
Google Scholar
[2]
J.Y. Kim, I. Chung, J.H. Choy, G.S. Park, Macromolecular nanoplatelet of Aurivillius-type layered perovskite oxide, Bi4Ti3O12, Chem. Mater. 13 (2001) 2759-2761.
DOI: 10.1021/cm0102436
Google Scholar
[3]
C. Zhang, Y.F. Zhu, Synthesis of square Bi2WO6 nanoplates as high-activity visible-light- driven photocatalysts, Chem. Mater. 17 (2005) 3537-3545.
DOI: 10.1021/cm0501517
Google Scholar
[4]
N. A. McDowell, K. S. Knight, P. Lightfoot, Unusual high-temperature structural behaviour in ferroelectric Bi2WO6, Chem. Eur. J. 12 (2006) 1493-1499.
DOI: 10.1002/chem.200500904
Google Scholar
[5]
S. Ikeda, N. Sugiyama, S. Murakami, H. Kominami, Y. Kera, H. Noguchi, K. Uosaki, T. Torimoto, B. Ohtani, Quantitative analysis of defective sites in titanium(IV) oxide photocatalyst powders, Phys. Chem. Chem. Phys. 5 (2003) 778–783.
DOI: 10.1039/b206594k
Google Scholar
[6]
B. Ohtani, R.M. Bowman, D.P. Colombo, H. Kominami, H. Noguchi, K. Uosaki, Femtosecond diffuse reflectance spectroscopy of aqueous Titanium(IV) oxide suspension: correlation of electron-hole recombination kinetics with photocatalytic activity, Chem. Lett. 7 (1998).
DOI: 10.1246/cl.1998.579
Google Scholar
[7]
A. Kudo, S. Hijii, H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions, Chem. Lett. 10 (1999) 1103-1104.
DOI: 10.1246/cl.1999.1103
Google Scholar
[8]
S.C. Zhang, C.A. Zhang, Y. Man, Y.F. Zhu, Visible-light-driven photocatalyst of Bi2WO6 nanoparticles prepared via amorphous complex precursor and photocatalytic properties, J. Solid State Chem. 179 (2006) 62-69.
DOI: 10.1016/j.jssc.2005.09.041
Google Scholar
[9]
L. Zhou, W.Z. Wang, L.S. Zhang, Ultrasonic-assisted synthesis of visible-light-induced Bi2MO6 (M = W, Mo) photocatalysts, J. Mol. Catal. A 268 (2007) 195-200.
DOI: 10.1016/j.molcata.2006.12.026
Google Scholar
[10]
L. Wu, J.H. Bi, Z.H. Li, X.X. Wang, X.Z. Fu, Rapid preparation of Bi2WO6 photocatalyst with nanosheet morphology via microwave-assisted solvothermal synthesis, Catal. Today 131 (2008) 15-20.
DOI: 10.1016/j.cattod.2007.10.089
Google Scholar
[11]
J.G. Yu, J.F. Xiong, B. Cheng, Y. Yu, J.B. Wang, Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders, J. Solid State Chem. 178 (2005)1968-(1972).
DOI: 10.1016/j.jssc.2005.04.003
Google Scholar
[12]
Y.Y. Li, J.P. Liu, X.T. Huang, G.Y. Li, Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres, Cryst. Growth Des. 7 (2007) 1350-1355.
Google Scholar
[13]
S.W. Liu, J.G. Yu, Cooperative self-construction and enhanced optical absorption of nanoplates-assembled hierarchical Bi2WO6 flowers, J. Solid State Chem. 181 (2008) 1048-1055.
DOI: 10.1016/j.jssc.2008.01.049
Google Scholar
[14]
M. Li, H. Schnablegger, S. Mann, Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization, Nature 402 (1999) 393-395.
DOI: 10.1038/46509
Google Scholar
[15]
S. Park, J. H. Lim, S. W. Chung, C. A. Mirkin, Self-assembly of mesoscopic metal-polymer amphiphiles, Science 303 (2004) 348-351.
DOI: 10.1126/science.1093276
Google Scholar
[16]
B. Liu, H. C. Zeng, Fabrication of ZnO dandelions, via a modified kirkendall process, J. Am. Chem. Soc. 126 (2004) 16744-16746.
DOI: 10.1021/ja044825a
Google Scholar
[17]
Z. R. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites, J. Am. Chem. Soc. 128 (2006) 10960-10968.
DOI: 10.1021/ja0631596
Google Scholar
[18]
H. Co¨fen, S. Mann, Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures, Angew. Chem. Int. Ed. 42 (2003) 2350-2365.
DOI: 10.1002/anie.200200562
Google Scholar
[19]
H. T. Shi, L. M. Qi, J. M. Ma, H. M. Cheng, Polymer-directed synthesis of penniform BaWO4 nanostructures in reverse micelles, J. Am. Chem. Soc. 125 (2003) 3450-3451.
DOI: 10.1021/ja029958f
Google Scholar
[20]
Z. P. Zhang, H. P. Sun, X. Q. Shao, D. F. Li, H. D. Yu, M. Y. Han, Three-dimensionally oriented aggregation of a few hundred nanoparticles into monocrystalline architectures, Adv. Mater. 17 (2005) 42-47.
DOI: 10.1002/adma.200400401
Google Scholar
[21]
R. A. Caruso, J. H. Schattka, A. Greiner, Titanium dioxide tubes from Sol–gel coating of electrospun polymer fibers, Adv. Mater. 13 (2001) 1577-1579.
DOI: 10.1002/1521-4095(200110)13:20<1577::aid-adma1577>3.0.co;2-s
Google Scholar
[22]
A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, M. Marquez, A. R. Bausch, D. A. Weitz, Colloidosomes: selectively permeable capsules composed of colloidal particles, Science 298 (2002) 1006-1009.
DOI: 10.1126/science.1074868
Google Scholar
[23]
J.J. Zhu, S. Xu, H. Wang, J.M. Zhu, H.Y. Chen, Sonochemical synthesis of CdSe hollow spherical assemblies via an In-situ template route, Adv. Mater. 15 (2003) 156-159.
DOI: 10.1002/adma.200390033
Google Scholar
[24]
T.R. Zhang, W.J. Dong, R.N. Njabon, V.K. Varadan, Z.R. Tian, Kinetically probing site-specific heterogeneous nucleation and hierarchical growth of nanobranches, J. Phys. Chem. C 111 (2007) 13691-13695.
DOI: 10.1021/jp072632e
Google Scholar
[25]
D.K. Ma, S.M. Huang, W.X. Chen, S.W. Hu, F. F Shi, and K.L. Fan. Self-assembled three-dimensional hierarchical umbilicate Bi2WO6 microspheres from nanoplates: controlled synthesis, photocatalytic activities, and wettability, J. Phys. Chem. C 113 (2009).
DOI: 10.1021/jp810726d
Google Scholar
[26]
J.W. Tang, Z.G. Zou, J.H. Ye, Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation, Catal. Lett. 92 (2004) 53-56.
DOI: 10.1023/b:catl.0000011086.20412.aa
Google Scholar