Nest-Like Bi2WO6 Self Assembled Microspheres Synthesized via One Step Template-Free Hydrothermal Process

Article Preview

Abstract:

Nest-like Bi2WO6 microspheres were successfully synthesized through a simple one step template-free approach employing a hydrothermal process, and it is found that citrate and NaHCO3 played multifold roles in the formation process of the nest-like microspheres. A formation mechanism of nested Bi2WO6 hierarchical microspheres was proposed based on XRD analysis and SEM observation of the products of different reaction conditions. The UV-vis diffuse reflectance spectra indicated that the as-synthesized microspheres have a significantly enhanced optical absorbance in the UV-vis region and red-shift phenomenon compared to that of Bi2WO6 powder prepared by the surfactant reaction method. The nest-like Bi2WO6 microspheres exhibited good photocatalytic activity in the degradation of Rhodamine-B (RhB) under 500 W Xe lamp light irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-12

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.S. Zhang, W.Z. Wang, L. Zhou, H.L. Xu, Bi2WO6 nano- and microstructures: shape control and associated visible-light-driven photocatalytic activities, Small 3 (2007) 1618 -1625.

DOI: 10.1002/smll.200700043

Google Scholar

[2] J.Y. Kim, I. Chung, J.H. Choy, G.S. Park, Macromolecular nanoplatelet of Aurivillius-type layered perovskite oxide, Bi4Ti3O12, Chem. Mater. 13 (2001) 2759-2761.

DOI: 10.1021/cm0102436

Google Scholar

[3] C. Zhang, Y.F. Zhu, Synthesis of square Bi2WO6 nanoplates as high-activity visible-light- driven photocatalysts, Chem. Mater. 17 (2005) 3537-3545.

DOI: 10.1021/cm0501517

Google Scholar

[4] N. A. McDowell, K. S. Knight, P. Lightfoot, Unusual high-temperature structural behaviour in ferroelectric Bi2WO6, Chem. Eur. J. 12 (2006) 1493-1499.

DOI: 10.1002/chem.200500904

Google Scholar

[5] S. Ikeda, N. Sugiyama, S. Murakami, H. Kominami, Y. Kera, H. Noguchi, K. Uosaki, T. Torimoto, B. Ohtani, Quantitative analysis of defective sites in titanium(IV) oxide photocatalyst powders, Phys. Chem. Chem. Phys. 5 (2003) 778–783.

DOI: 10.1039/b206594k

Google Scholar

[6] B. Ohtani, R.M. Bowman, D.P. Colombo, H. Kominami, H. Noguchi, K. Uosaki, Femtosecond diffuse reflectance spectroscopy of aqueous Titanium(IV) oxide suspension: correlation of electron-hole recombination kinetics with photocatalytic activity, Chem. Lett. 7 (1998).

DOI: 10.1246/cl.1998.579

Google Scholar

[7] A. Kudo, S. Hijii, H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions, Chem. Lett. 10 (1999) 1103-1104.

DOI: 10.1246/cl.1999.1103

Google Scholar

[8] S.C. Zhang, C.A. Zhang, Y. Man, Y.F. Zhu, Visible-light-driven photocatalyst of Bi2WO6 nanoparticles prepared via amorphous complex precursor and photocatalytic properties, J. Solid State Chem. 179 (2006) 62-69.

DOI: 10.1016/j.jssc.2005.09.041

Google Scholar

[9] L. Zhou, W.Z. Wang, L.S. Zhang, Ultrasonic-assisted synthesis of visible-light-induced Bi2MO6 (M = W, Mo) photocatalysts, J. Mol. Catal. A 268 (2007) 195-200.

DOI: 10.1016/j.molcata.2006.12.026

Google Scholar

[10] L. Wu, J.H. Bi, Z.H. Li, X.X. Wang, X.Z. Fu, Rapid preparation of Bi2WO6 photocatalyst with nanosheet morphology via microwave-assisted solvothermal synthesis, Catal. Today 131 (2008) 15-20.

DOI: 10.1016/j.cattod.2007.10.089

Google Scholar

[11] J.G. Yu, J.F. Xiong, B. Cheng, Y. Yu, J.B. Wang, Hydrothermal preparation and visible-light photocatalytic activity of Bi2WO6 powders, J. Solid State Chem. 178 (2005)1968-(1972).

DOI: 10.1016/j.jssc.2005.04.003

Google Scholar

[12] Y.Y. Li, J.P. Liu, X.T. Huang, G.Y. Li, Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres, Cryst. Growth Des. 7 (2007) 1350-1355.

Google Scholar

[13] S.W. Liu, J.G. Yu, Cooperative self-construction and enhanced optical absorption of nanoplates-assembled hierarchical Bi2WO6 flowers, J. Solid State Chem. 181 (2008) 1048-1055.

DOI: 10.1016/j.jssc.2008.01.049

Google Scholar

[14] M. Li, H. Schnablegger, S. Mann, Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization, Nature 402 (1999) 393-395.

DOI: 10.1038/46509

Google Scholar

[15] S. Park, J. H. Lim, S. W. Chung, C. A. Mirkin, Self-assembly of mesoscopic metal-polymer amphiphiles, Science 303 (2004) 348-351.

DOI: 10.1126/science.1093276

Google Scholar

[16] B. Liu, H. C. Zeng, Fabrication of ZnO dandelions, via a modified kirkendall process, J. Am. Chem. Soc. 126 (2004) 16744-16746.

DOI: 10.1021/ja044825a

Google Scholar

[17] Z. R. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites, J. Am. Chem. Soc. 128 (2006) 10960-10968.

DOI: 10.1021/ja0631596

Google Scholar

[18] H. Co¨fen, S. Mann, Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures, Angew. Chem. Int. Ed. 42 (2003) 2350-2365.

DOI: 10.1002/anie.200200562

Google Scholar

[19] H. T. Shi, L. M. Qi, J. M. Ma, H. M. Cheng, Polymer-directed synthesis of penniform BaWO4 nanostructures in reverse micelles, J. Am. Chem. Soc. 125 (2003) 3450-3451.

DOI: 10.1021/ja029958f

Google Scholar

[20] Z. P. Zhang, H. P. Sun, X. Q. Shao, D. F. Li, H. D. Yu, M. Y. Han, Three-dimensionally oriented aggregation of a few hundred nanoparticles into monocrystalline architectures, Adv. Mater. 17 (2005) 42-47.

DOI: 10.1002/adma.200400401

Google Scholar

[21] R. A. Caruso, J. H. Schattka, A. Greiner, Titanium dioxide tubes from Sol–gel coating of electrospun polymer fibers, Adv. Mater. 13 (2001) 1577-1579.

DOI: 10.1002/1521-4095(200110)13:20<1577::aid-adma1577>3.0.co;2-s

Google Scholar

[22] A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, M. Marquez, A. R. Bausch, D. A. Weitz, Colloidosomes: selectively permeable capsules composed of colloidal particles, Science 298 (2002) 1006-1009.

DOI: 10.1126/science.1074868

Google Scholar

[23] J.J. Zhu, S. Xu, H. Wang, J.M. Zhu, H.Y. Chen, Sonochemical synthesis of CdSe hollow spherical assemblies via an In-situ template route, Adv. Mater. 15 (2003) 156-159.

DOI: 10.1002/adma.200390033

Google Scholar

[24] T.R. Zhang, W.J. Dong, R.N. Njabon, V.K. Varadan, Z.R. Tian, Kinetically probing site-specific heterogeneous nucleation and hierarchical growth of nanobranches, J. Phys. Chem. C 111 (2007) 13691-13695.

DOI: 10.1021/jp072632e

Google Scholar

[25] D.K. Ma, S.M. Huang, W.X. Chen, S.W. Hu, F. F Shi, and K.L. Fan. Self-assembled three-dimensional hierarchical umbilicate Bi2WO6 microspheres from nanoplates: controlled synthesis, photocatalytic activities, and wettability, J. Phys. Chem. C 113 (2009).

DOI: 10.1021/jp810726d

Google Scholar

[26] J.W. Tang, Z.G. Zou, J.H. Ye, Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation, Catal. Lett. 92 (2004) 53-56.

DOI: 10.1023/b:catl.0000011086.20412.aa

Google Scholar