Porosity Development in Carbon Nanofibers by Physical and Chemical Activation

Article Preview

Abstract:

In this Work we Have Compared the Effects of Physical Activation with CO2 and Chemical Activation with KOH on Porosity Development in Vapor Grown Carbon Nanofibers (CNFs). both Physical and Chemical Activations Result in Micro- and Mesoporosity Development in the Studied Cnfs. under this Work’s Conditions, Chemical Activation with KOH Was More Efficient than Physical Activation with CO2 in Terms of Surface Area Increase Regarding the Fresh Material (7.5-Fold versus 4-Fold, Respectively, under the Optimal Conditions Found for each Type of Activation). Atomic Force Microscopy Indicated that, although the CNF Samples Retained their Fibrous Morphology upon both Physical and Chemical Activation, the Latter Treatment Brought about Noticeable Changes in their Nanometer-Scale Structure. Likewise, an Appreciable Decrease in Nanofiber Diameter Following both Types of Activation Was Noticed. However, such Diameter Reduction Could Not Account for the Increase in Specific Surface Area of the Activated Materials, which Has to Be Attributed to Porosity Development. X-Ray Diffraction Studies Showed that both Physical as Chemical Activation Take Place Mainly on the Disordered Skin of the Cnfs but in a Different Way. Thus, Physical Activation Removes the More Amorphous Areas from the CNF Skin by Gasification (which Increases their Structural Order), while upon Chemical Activation with KOH, the Carbon Material Is Oxidized to a Carbonate, and the Alkali Hydroxide Is Reduced to Metallic Potassium, which Becomes Intercalated between the Graphene Layers of the Carbon Material, Leading to a Certain Expansion of the Structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

211-227

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.P. Biró, C.A. Bernardo, G.G. Tibbetts, P. Lambin (Eds. ), Carbon Filaments and Nanotubes: Common Origins, Differing Applications?, Kluwer, Dordrecht, (2001).

DOI: 10.1007/978-94-010-0777-1

Google Scholar

[2] K.L. Klein, A.V. Melechko, T.E. McKnight, S.T. Retterer, P.D. Rack, J.D. Fowlkes, D.C. Joy, M.L. Simpson, Magnetic properties of Fe-Co catalysts used for carbon nanofiber synthesis, J. Appl. Phys. 103 (2008) 061301.

DOI: 10.1063/1.2840049

Google Scholar

[3] G.G. Tibbetts, M.L. Lake, K.L. Strong, B.P. Rice, A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites, Compos. Sci. Technol. 67 (2007) 1709-1718.

DOI: 10.1016/j.compscitech.2006.06.015

Google Scholar

[4] M.H. Al-Saleh, U. Sundararaj, A review of vapor grown carbon nanofiber/polymer conductive composites, Carbon 47 (2009) 2-22.

DOI: 10.1016/j.carbon.2008.09.039

Google Scholar

[5] S.E. Baker, K.Y. Tse, C.S. Lee, R.J. Hamers, Fabrication and characterization of vertically aligned carbon nanofiber electrodes for biosensing applications, Diamond Relat. Mater. 15 (2006), 433-439.

DOI: 10.1016/j.diamond.2005.08.019

Google Scholar

[6] P.A. Tran, L. Zhang, T.J. Webster, Carbon nanofibers and carbon nanotubes in regenerative medicine, Adv. Drug Deliver. Rev. 61 (2009) 1097-1114.

DOI: 10.1016/j.addr.2009.07.010

Google Scholar

[7] P. Serp, M. Corrias, P. Kalck, Carbon nanotubes and nanofibers in catalysis, Appl. Catal. AGen. 253 (2003) 337-358.

Google Scholar

[8] F.U. Naab, M. Dhoubhadek, J.R. Gilbert, M.C. Gilbert, L.K. Savage, O.W. Holland, J.L. Duggan, F.D. McDaniel, Direct measurement of hydrogen adsorption in carbon nanotubes/nanofibers by elastic recoil detection, Phys. Lett. A 356 (2006) 152-155.

DOI: 10.1016/j.physleta.2006.03.031

Google Scholar

[9] G. Andrade-Espinosa, E. Muñoz-Sandoval, M. Terrones, M. Endo, H. Terrones, J.R. RangelMendez, Acid modified bamboo-type carbon nanotubes and cup-stacked-type carbon nanofibres as adsorbent materials: Cadmium removal from aqueous solution, J. Chem. Technol. Biot. 84 (2009).

DOI: 10.1002/jctb.2073

Google Scholar

[10] K.P. De Jong, J.W. Geus, Carbon Nanofibers: Catalytic Synthesis and Applications, Catal. Rev. 42 (2000) 481-510.

Google Scholar

[11] F. Schüth, K.S.W. Sing, J. Weitkamp (Eds. ), Handbook of Porous Solids, Wiley-VCH, Weinheim, (2002).

Google Scholar

[12] S. -H. Yoon, S. Lim, Y. Song, Y. Ota, W. Qiao, A. Tanaka, I. Mochida, KOH activation of carbon nanofibers, Carbon 42 (2004) 1723-1729.

DOI: 10.1016/j.carbon.2004.03.006

Google Scholar

[13] C. Merino, P. Soto, E. Vilaplana-Ortego, J.M. Gómez de Salazar, F. Pico, J.M. Rojo, Carbon nanofibres and activated carbon nanofibres as electrodes in supercapacitors, Carbon 43 (2005) 551-557.

DOI: 10.1016/j.carbon.2004.10.018

Google Scholar

[14] J.M. Blackman, J.W. Patrick, A. Arenillas, W. Shi, C.E. Snape, Activation of carbon nanofibres for hydrogen storage, Carbon 44 (2006) 1376-1385.

DOI: 10.1016/j.carbon.2005.11.015

Google Scholar

[15] F. Suárez-García, J. Nauroy, A. Martínez-Alonso, J.M.D. Tascón, Thermogravimetric studies on the activation of nanometric carbon fibers, J. Therm. Anal. Calorim. 79 (2005) 525-528.

DOI: 10.1007/s10973-005-0573-1

Google Scholar

[16] D. Cazorla-Amorós, J. Alcañiz-Monge, A. Linares-Solano, Characterization of activated carbon fibers by CO2 adsorption, Langmuir 12 (1996) 2820-2824.

DOI: 10.1021/la960022s

Google Scholar

[17] D. Cazorla-Amorós, J. Alcañiz-Monge, M.A. Casa-Lillo, A. Linares-Solano, CO2 as an adsorptive to characterize carbon molecular sieves and activated carbons, Langmuir 14 (1998) 4589-4596.

DOI: 10.1021/la980198p

Google Scholar

[18] A. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martínez-Alonso, J.M.D. Tascón, Effect of various treatments on carbon fiber surfaces studied by Raman microprobe spectrometry, Appl. Spectroscopy 52 (1998) 356-360.

DOI: 10.1366/0003702981943815

Google Scholar

[19] J.I. Paredes, A. Martínez-Alonso, J.M.D. Tascón, Detecting surface oxygen groups on carbon nanofibers by phase contrast imaging in tapping mode AFM, Langmuir 19 (2003) 7665-7668.

DOI: 10.1021/la020880q

Google Scholar

[20] J.I. Paredes, A. Martínez-Alonso, J.M.D. Tascón, Surface characterization of submicron vapor grown carbon fibers by scanning tunneling microscopy, Carbon 39 (2001) 1575-1587.

DOI: 10.1016/s0008-6223(00)00286-4

Google Scholar

[21] D.W. McKee, Mechanisms of the alkali metal catalysed gasification of carbon, Fuel 62 (1983) 170-175.

DOI: 10.1016/0016-2361(83)90192-8

Google Scholar

[22] C.L. Spiro, D.W. McKee, P.G. Kosky, D.J. Lamby, Catalytic CO2-gasification of graphite versus coal char, Fuel 62 (1983) 180-184.

DOI: 10.1016/0016-2361(83)90194-1

Google Scholar

[23] F. Kapteijn, J.A. Moulijn, Kinetics of the potassium carbonate-catalysed CO2 gasification of activated carbon, Fuel 62 (1983) 221-225.

DOI: 10.1016/0016-2361(83)90203-x

Google Scholar

[24] J. Laine, A. Calafat, Factors affecting the preparation of activated carbons from coconut shell catalized by potassium, Carbon 29 (1991) 949-953.

DOI: 10.1016/0008-6223(91)90173-g

Google Scholar

[25] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol et al., Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984), Pure Appl. Chem. 57 (1985).

DOI: 10.1515/iupac.57.0007

Google Scholar

[26] F. Rouquerol, J. Rouquerol, K. Sing, Adsorpion by powders and porous solids. Principles, methodology and applications, Academic Press, San Diego, (1999).

DOI: 10.1002/vipr.19990110317

Google Scholar

[27] J. Garrido, A. Linares-Solano, J.M. Martín-Martínez, M. Molina-Sabio, F. RodríguezReinoso, R. Torregrosa, Use of N2 vs CO2 in the characterization of activated carbons, Langmuir 3 (1987) 76-81.

DOI: 10.1021/la00073a013

Google Scholar

[28] J.P. Olivier, Improving the models used for calculating the size distribution of micropore volume of activated carbons from adsorption data, Carbon 36 (1998) 1469-1472.

DOI: 10.1016/s0008-6223(98)00139-0

Google Scholar

[29] Ph. Serp, J.L. Figueiredo, P. Bertrand, J.P. Issi, Surface treatments of vapor-grown carbon fibers produced on a substrate, Carbon 36 (1998) 1791-1799.

DOI: 10.1016/s0008-6223(98)00149-3

Google Scholar

[30] A. Ahmadpour, D.D. Do, The preparation of activated carbon from macadamia nutshell by chemical activation, Carbon 35 (1997) 1723-1732.

DOI: 10.1016/s0008-6223(97)00127-9

Google Scholar

[31] H. Teng, S. -C. Wang, Preparation of porous carbons from phenol-formaldehyde resins with chemical and physical activation, Carbon 38 (2000) 817-824.

DOI: 10.1016/s0008-6223(99)00160-8

Google Scholar

[32] Y. Zou, B. -X. Han, High-surface-area activated carbon from Chinese coal, Energy Fuels 15 (2001) 1383-1386.

DOI: 10.1021/ef0002851

Google Scholar

[33] I. Martín-Gullón, R. Andrews, M. Jagtoyen, F. Derbyshire, PAN-based activated carbon fiber composites for sulfur dioxide conversion: Influence of fiber activation method, Fuel 80 (2001) 969-977.

DOI: 10.1016/s0016-2361(00)00186-1

Google Scholar

[34] A.C. Lua, T. Yang, Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell, J. Colloid Interface Sci. 274 (2004) 594-601.

DOI: 10.1016/j.jcis.2003.10.001

Google Scholar

[35] A. Linares-Solano, D. Lozano-Castelló, M.A. Lillo-Ródenas, D. Cazorla-Amorós, Carbon activation by alkaline hydroxides: preparation and reactions, porosity and performance, Chem. Phys. Carbon 30 (2007) 1-62.

DOI: 10.1201/9781420042993.ch1

Google Scholar

[36] M.J. Illán-Gomez, A. García-García, C. Salinas-Martínez de Lecea, A. Linares-Solano, Activated carbons from Spanish coals. 2. Chemical activation Energy Fuels 10 (1996) 11081114.

DOI: 10.1021/ef950195+

Google Scholar

[37] A. Ahmadpour, D.D. Do, The preparation of active carbons from coal by chemical and physical activation, Carbon 34 (1996) 471-479.

DOI: 10.1016/0008-6223(95)00204-9

Google Scholar

[38] D. Lozano-Castelló, M.A. Lillo-Ródenas, D. Cazorla-Amorós, A. Linares-Solano, Preparation of activated carbons from Spanish anthracite I. Activation by KOH, Carbon 39 (2001) 741749.

DOI: 10.1016/s0008-6223(00)00185-8

Google Scholar

[39] M.A. Lillo-Ródenas, D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, Preparation of activated carbons from Spanish anthracite: II. Activation by NaOH, Carbon 39 (2001) 751759.

DOI: 10.1016/s0008-6223(00)00185-8

Google Scholar