Si Doped and Un-Doped CrN Thin Films Produced by Magnetron Sputtering: Structural and Mechanical Properties

Article Preview

Abstract:

Chromium nitride and silicon doped chromium nitride thin films have been deposited by r.f. reactive magnetron sputtering. The effect of processing parameters on the properties of chromium nitride films and the correspondent influence of the addition of silicon on the chromium nitride matrix in the films structure and mechanical properties have been investigated. The characterization of the coatings was performed by X-ray diffraction (XRD), and nano-indentation experiments. These studies allow analyzing the crystalline phases, crystal orientation/texture, crystallite size, mechanical properties and the relations between the characteristics of the films. The increase of the nitrogen partial pressure in the working atmosphere produces changes from a body-centered cubic (bcc) Cr structure, to hexagonal Cr2N to face-centered cubic (fcc) CrN structure, with CrN (111) preferred orientation. For the films with a dominant Cr2N phase the hardness has a relative maximum (42 GPa). The highest hardness was measured for a coating with dominant CrN phase (45 GPa) with a crystallite size around 18 nm. The addition of Si, in the films with CrN dominant phase, maintains the CrN (111) preferred orientation and produced variable changes in films hardness, depending on deposition conditions.

You might also be interested in these eBooks

Info:

Periodical:

Journal of Nano Research (Volumes 18-19)

Pages:

201-211

Citation:

Online since:

July 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Veprek, S. Reiprich, A concept for the design of novel superhard coatings, Thin Solid Films 268 (1995) 64-71

DOI: 10.1016/0040-6090(95)06695-0

Google Scholar

[2] G.-S. Kim, B.-S. Kim, S.-Y. Lee, High-speed wear behaviors of CrSiN coatings for the industrial applications of water hydraulics, Surf. Coat. Technol. 200 (2005) 1814-1818

DOI: 10.1016/j.surfcoat.2005.08.059

Google Scholar

[3] M. Diserens, J. Patscheider, F. Lévy, Improving the properties of titanium nitride by incorporation of silicon, Surf. Coat. Technol. 108–109 (1998) 241-246

DOI: 10.1016/s0257-8972(98)00560-x

Google Scholar

[4] S. Veprek, The search for novel, superhard materials, J. Vac. Sci. Technol. A 17 (1999) 2401-2420

Google Scholar

[5] H.C. Barshilia, A. Jain, K.S. Rajam, Structure, hardness and thermal stability of nanolayered TiN/CrN multilayer coatings, Vacuum 72 (2003) 241-248

DOI: 10.1016/j.vacuum.2003.08.003

Google Scholar

[6] G.A. Zhang, Z.G. Wu, M.X. Wang, X.Y. Fan, J. Wang, P.X. Yan, Structure evolution and mechanical properties enhancement of A1/A1N multilayer, Appl. Surf. Sci. 253 (2007) 8835-8840

DOI: 10.1016/j.apsusc.2007.04.039

Google Scholar

[7] J.H. Park, W.S. Chung, Y.-R. Cho, K.H. Kim, Synthesis and mechanical properties of Cr-Si-N coatings deposited by a hybrid system of arc ion plating and sputtering techniques, Surf. Coat. Technol. 188–189 (2004) 425-430

DOI: 10.1016/j.surfcoat.2004.08.045

Google Scholar

[8] E. Martinez, R. Sanjines, A. Karimi, J. Esteve, F. Levy, Mechanical properties of nanocomposite and multilayered Cr-Si-N sputtered thin films, Surf. Coat. Technol. 180–181 (2004) 570-574

DOI: 10.1016/j.surfcoat.2003.10.121

Google Scholar

[9] D. Pilloud, J.F. Pierson, J. Takadoum, Structure and tribological properties of reactively sputtered Zr-Si-N films, Thin Solid Films 496 (2006) 445-449

DOI: 10.1016/j.tsf.2005.09.062

Google Scholar

[10] Y.S. Dong, Y. Liu, J.W. Dai, G.Y. Li, Superhard Nb-Si-N composite films synthesized by reactive magnetron sputtering, Appl. Surf. Sci. 252 (2006) 5215-5219

DOI: 10.1016/j.apsusc.2005.08.007

Google Scholar

[11] Q. Liu, Q.F. Fang, F.J. Liang, J.X. Wang, J.F. Yang, C. Li, Synthesis and properties of nanocomposite MoSiN hard films, Surf. Coat. Technol. 201 (2006) 1894-1898

DOI: 10.1016/j.surfcoat.2005.12.046

Google Scholar

[12] E. Martinez, R. Sanjinés, O. Banakh, F. Lévy, Electrical, optical and mechanical properties of sputtered CrNy and Cr1-xSixN1.02 thin films, Thin Solid Films 447–448 (2004) 332-336

DOI: 10.1016/s0040-6090(03)01113-1

Google Scholar

[13] H.Y. Lee, W.S. Jung, J.G. Han, S.M. Seo, J.H. Kim, Y.H. Bae, The synthesis of CrSiN film deposited using magnetron sputtering system, Surface & Coatings Technology 200 (2005) 1026-1030

DOI: 10.1016/j.surfcoat.2005.02.006

Google Scholar

[14] G. Zhang, L. Wang, S.C. Wang, P. Yan, Q. Xue, Structure and mechanical properties of reactive sputtering CrSiN films, Applied Surface Science 255 (2009) 4425-4429

DOI: 10.1016/j.apsusc.2008.11.036

Google Scholar

[15] D. Mercs, N. Bonasso, S. Naamane, Jean-Michel Bordes, C. Coddet, Mechanical and tribological properties of Cr-N and Cr-SI-N coatings reactively sputter deposited, Surf. Coat. Technol. 200 (2005) 403-407

DOI: 10.1016/j.surfcoat.2005.02.214

Google Scholar

[16] D. Mercs, P. Briois, V. Demange, S. Lamy, C. Coddet, Influence of the addition of silicon on the structure and properties of chromium nitride coatings deposited by reactive magnetron sputtering assisted by RF plasmas, Surf. Coat. Technol. 201 (2007) 6970-6976

DOI: 10.1016/j.surfcoat.2006.12.028

Google Scholar

[17] T. H. Dekeijser, J.I. Langford, E.F. Mittemeijer, A.B.P. Vogels, Use of the Voigt function in a single-line method for analysis of X-ray-diffraction line broadening, J. Appl. Crystallogr. 15 (1982) 308-314

DOI: 10.1107/s0021889882012035

Google Scholar

[18] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583

DOI: 10.1557/jmr.1992.1564

Google Scholar

[19] A. Barata, L. Cunha, C. Moura, Characterisation of chromium nitride films produced by PVD techniques, Thin Solid Films 398 –399 (2001) 501

DOI: 10.1016/s0040-6090(01)01498-5

Google Scholar

[20] M. Pakala, R.Y. Lin, Reactive sputter deposition of chromium nitride coatings, Surf. Coat. Technol. 81 (1996) 233-239

DOI: 10.1016/0257-8972(95)02488-3

Google Scholar