[1]
E. Chaichana, B. Jongsomjit, P. Praserthdam, Effect of nano-SiO2 particle size on the formation of LLDPE/SiO2 nanocomposite synthesized via the in situ polymerization with metallocene catalyst, Chemical Engineering Science, 62 (2007) 899-905.
DOI: 10.1016/j.ces.2006.10.005
Google Scholar
[2]
M.A. Khazrayie, A.R.S. Aghdam, Si3N4/Ni nanocomposite formed by electroplating: Effect of average size of nanoparticulates, Transactions of Nonferrous Metals Society of China, 20 (2010) 1017-1023.
DOI: 10.1016/s1003-6326(09)60251-x
Google Scholar
[3]
T. Kinoshita, S. Seino, H. Maruyama, Y. Otome, K. Okitsu, T. Nakayama, K. Niihara, T. Nakagawa, T.A. Yamamoto, Influence of size distribution on the magnetocaloric effect of superparamagnetic gold-magnetite nanocomposite, Journal of Alloys and Compounds, 365 (2004).
DOI: 10.1016/s0925-8388(03)00663-7
Google Scholar
[4]
Q.F. Xiao, T. Zhao, Z.D. Zhang, E. Brück, K.H.J. Buschow, F.R. de Boer, Effect of grain size and magnetocrystalline anisotropy on exchange coupling in nanocomposite two-phase Nd-Fe-B magnets, Journal of Magnetism and Magnetic Materials, 223 (2001).
DOI: 10.1016/s0304-8853(00)01267-1
Google Scholar
[5]
M. Aliofkhazraei, A. Sabour Rouhaghdam, Fabrication of TiC/WC ultra hard nanocomposite layers by plasma electrolysis and study of its characteristics, Surface and Coatings Technology, 205 (2010) S51-S56.
DOI: 10.1016/j.surfcoat.2010.04.010
Google Scholar
[6]
M. Aliofkhazraei, A. Sabour Rouhaghdam, T. Shahrabi, Abrasive wear behaviour of Si3N4/TiO2 nanocomposite coatings fabricated by plasma electrolytic oxidation, Surface and Coatings Technology, 205 (2010) S41-S46.
DOI: 10.1016/j.surfcoat.2010.03.052
Google Scholar
[7]
R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, G.E. Thompson, M.C. Merino, AC plasma electrolytic oxidation of magnesium with zirconia nanoparticles, Applied Surface Science, 254 (2008) 6937-6942.
DOI: 10.1016/j.apsusc.2008.04.100
Google Scholar
[8]
E. Matykina, R. Arrabal, F. Monfort, P. Skeldon, G.E. Thompson, Incorporation of zirconia into coatings formed by DC plasma electrolytic oxidation of aluminium in nanoparticle suspensions, Applied Surface Science, 255 (2008) 2830-2839.
DOI: 10.1016/j.apsusc.2008.08.036
Google Scholar
[9]
E. Matykina, R. Arrabal, P. Skeldon, G.E. Thompson, Transmission electron microscopy of coatings formed by plasma electrolytic oxidation of titanium, Acta Biomaterialia, 5 (2009) 1356-1366.
DOI: 10.1016/j.actbio.2008.10.007
Google Scholar
[10]
M. Aliofkhazraee, A. Sabour Rouhaghdam, Pulsed nanocrystalline plasma electrolytic carburising for corrosion protection of a [gamma]-TiAl alloy: Part 2. Constant frequency and duty cycle, Journal of Alloys and Compounds, 462 (2008) 421-427.
DOI: 10.1016/j.jallcom.2007.08.074
Google Scholar
[11]
M. Aliofkhazraee, A. Sabour Rouhaghdam, T. Shahrabi, Pulsed nanocrystalline plasma electrolytic carburising for corrosion protection of a [gamma]-TiAl alloy: Part 1. Effect of frequency and duty cycle, Journal of Alloys and Compounds, 460 (2008).
DOI: 10.1016/j.jallcom.2007.06.007
Google Scholar
[12]
M. Aliofkhazraei, S.A. Hassanzadeh-Tabrizi, A. Sabour Rouhaghdam, A. Heydarzadeh, Nanocrystalline ceramic coating on [gamma]-TiAl by bipolar plasma electrolysis (effect of frequency, time and cathodic/anodic duty cycle), Ceramics International, 35 (2009).
DOI: 10.1016/j.ceramint.2008.11.005
Google Scholar
[13]
X. -M. Li, Y. Han, Porous nanocrystalline Ti(CxN1-x) thick films by plasma electrolytic carbonitriding, Electrochemistry Communications, 8 (2006) 267-272.
DOI: 10.1016/j.elecom.2005.11.017
Google Scholar
[14]
X. -M. Li, Y. Han, Y. -S. Li, Synthesis of nanocrystallineTi(CxN1-x) thick films on titanium by plasma electrolytic carbonitriding, Surface and Coatings Technology, 201 (2007) 5326-5329.
DOI: 10.1016/j.surfcoat.2006.07.026
Google Scholar
[15]
M. Aliofkhazraei, P. Taheri, A. Sabour Rouhaghdam, C. Dehghanian, Study of nanocrystalline plasma electrolytic carbonitriding for CP-Ti, Materials Science, 44 (2008) 145-145.
DOI: 10.1007/s11003-008-9055-5
Google Scholar
[16]
M. Aliofkhazraei, S.H.H. Mofidi, A. Sabour Rouhaghdam, E. Mohsenian, Duplex Surface Treatment of Pre-Electroplating and Pulsed Nanocrystalline Plasma Electrolytic Carbonitriding of Mild Steel, Journal of Thermal Spray Technology, 17 (2008).
DOI: 10.1007/s11666-008-9179-z
Google Scholar
[17]
M. Aliofkhazraei, A. Rouhaghdam, M. Sabouri, Effect of frequency and duty cycle on corrosion behavior of pulsed nanocrystalline plasma electrolytic carbonitrided CP-Ti, Journal of Materials Science, 43 (2008) 1624-1629.
DOI: 10.1007/s10853-007-2323-1
Google Scholar
[18]
M. Aliofkhazraei, A. Sabour Rouhaghdam, A. Heydarzadeh, H. Elmkhah, Nanostructured layer formed on CP-Ti by plasma electrolysis (effect of voltage and duty cycle of cathodic/anodic direction), Materials Chemistry and Physics, 113 (2009) 607-612.
DOI: 10.1016/j.matchemphys.2008.08.022
Google Scholar