Energetic Ion Irradiation as Advanced Process for Functionalization of Silicon Nanocrystals in a SiO2 Matrix

Article Preview

Abstract:

A physical picture of swift heavy ion irradiation effects on ensembles of silicon nanocrystallites (NCs) embedded in a dielectric SiO2 matrix is given following our study of the experimental investigation of structural, electrical and photoluminescence properties of that system We found that ion irradiation can drastically change the structure of the layer by forming an ordered NC chains along the ion tracks in the 400-1000 nm thick layer. The ion energy and dose are then the main tools for functionalization of our system, from changing the size and the concentration of the NCs, to managing the optical and electrical properties.

You might also be interested in these eBooks

Info:

Periodical:

Journal of Nano Research (Volumes 18-19)

Pages:

241-246

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. M Saavedra, T. J Mullen, P. Zhang, D. C Dewey, S. A Claridge, P. S Weiss, Rep. Prog. Phys. 73, 036501 (2010).

DOI: 10.1088/0034-4885/73/3/036501

Google Scholar

[2] B.K. Long, B.K. Keitz C.G. Willson, J Mater. Chem., 17 3575 (2007).

Google Scholar

[3] C.T. Black, ACS Nano, 1, 147 (2007).

Google Scholar

[4] S.V. Tang, E.M. Lennon, G.H. Fredrickson, E.J. Kramer, C.J. Hawker, Science 322, 429, (2008).

Google Scholar

[5] E. Dawi, G. Rizza, A. Vredenberg, Abstracts of Int. Conf. on Ion Beam Modification of Materials, 361 (2008).

Google Scholar

[6] I.V. Antonova, M.B. Gulyaev, V.A. Volodin, A.G. Cherkov, D.V. Marin, V.A. Skuratov, J. Jedrzejewski, I. Balberg, Nanotechnology, 20, 095205 (2009).

DOI: 10.1088/0957-4484/20/9/095205

Google Scholar

[7] I.V. Antonova, A.G. Cherkov, V.A. Skuratov, M.S. Kagan, J. Jedrzejewski, I. Balberg, Nanotechnology, 20, 185401 (2009).

DOI: 10.1088/0957-4484/20/18/185401

Google Scholar

[8] I.V. Antonova, D.V. Marin, V.A. Volodin, V.A. Skuratov, J. Jedrzejewski, I. Balberg, Solid State Phenomena 156 – 158, 523 (2010).

DOI: 10.4028/www.scientific.net/ssp.156-158.523

Google Scholar

[9] I. V. Antonova, V. A. Skuratov, J. Jedrzejewski, and I. Balberg, Semiconductors, 44, 482 (2010).

Google Scholar

[10] A. Sa'ar, Y. Reichman, M. Dovrat, D. Krapf, J. Jedrzejewski, I. Balberg, Nano Lett., 5, 2443, (2005).

Google Scholar

[11] I.V. Antonova , M.B. Gulyaev, E. Savir, J. Jedrzejewski I. Balberg Phys. Rev. B, 77, 125318 (2008).

Google Scholar

[12] M. Toulemonde, Ch. Dufour, A. Meftah, E. Paumier, Nucl. Inst. Meth. B, 166-167, 903 (2000).

Google Scholar

[13] A. Metah, F. Brisard, J.M. Constantin, E. Dooryhee, M. Hage-Ali, M. Hervieu, J.P. Stoquert, F. Studer, M. Toulemonde, Phys. Rev. B, 49, 12457(1997).

Google Scholar

[14] T. Van Dillen, A. Polman, P.R. Onck, E. van der Giessen, Phys. Rev. B, 71, 024103 (2005).

Google Scholar

[15] T. van Dillen, M.J.A. de Dood, J.J. Penninkhof, A. Polman, S. Roorda, A.M. Vredenberg, Appl. Phys. Lett., 84, 3591 (2004).

DOI: 10.1063/1.1737480

Google Scholar

[16] D. Mathiot, J.P. Schunck, M. Perego, M. Fanciulli, P. Normand, C. Tsamis, D. Tsoukalas, J. Appl. Phys., 94, 2136 (2004).

DOI: 10.1063/1.1589168

Google Scholar

[17] R.M.C. de Almeida, S. Goncalves, J.R. Baumvol, F.C. Stediler, Phys. Rev. B, 61, 12992 (2000).

Google Scholar

[18] L.W. Yu, K.J. Chen, L.C. Wu, M. Dai, W. Li, X.F. Huang, Phys. Rev. B, 71, 245305 (2005).

Google Scholar

[19] L. Wu, M. Dai, X. Huang, W. Li, K. Chen, J. Vac. Sci. Technol. B, 22, 678 (2004).

Google Scholar

[20] S. Huang, S. Banerjee, R.T. Tung, S. Oda, Appl. Phys. Lett, 93, 576 (2003).

Google Scholar

[21] K. Kim, Phys. Rev. B, 57, 13072 (1998).

Google Scholar

[22] Q. Wan, T.H. Wang, M. Zhu, C.L. Lin, Appl. Phys. Lett., 81, 539 (2002).

Google Scholar

[23] I.V. Antonova, E.P. Neustroev, S.A. Smagulova, J. Jedrzejewski, I. Balberg, J. Appl. Phys., 106, 064306 (2009).

Google Scholar

[24] S.V. Gaponenko, Optical Properties of Semiconductor Nanocrystals, Cambridge University Press, Cambridge, (1998).

Google Scholar

[25] A.S. Moskalenko, J. Beracdar, A.A. Prokofiev, I.N. Yassievich, Phys. Rev. B, 76, 085427 (2007).

Google Scholar

[26] I.V. Antonova, E.P. Neustroev, S.A. Smagulova, J. Jedrzejewski, I. Balberg, Semiconductor, in press. Figure captures Fig. 1 The average size of Si nanocrystallites, estimated from the experimentally observed energies of the traps in the system and theoretical models in.

Google Scholar

[23] (1) and.

Google Scholar

[24] (2), as a function of high energy ions dose. Sizes were normalized respectively to the values of 3. 3 and 5. 2 nm. The irradiation was made by Bi ions with an energy of 670 MeV. Fig. 2 The times te of carrier emission from the NCs to the substrate as extracted from our Q-DLTS measurements for pristine and irradiated (Bi, 670 MeV, 8x1012 cm-2) samples. The Si phase contents in the SiO2 layer are given in the figure. Fig. 1 Fig. 2 Energetic Ion Irradiation as Advanced Process for Functionalization of the Silicon Nanocrystals in SiO2 matrix, I.V. Antonova, V.A. Skuratov, I. Balberg.

DOI: 10.4028/www.scientific.net/jnanor.18-19.241

Google Scholar