Building up Multiwall Carbon Nanotubes Nanostructures inside Millimetric Channels of Ceramic Monoliths

Article Preview

Abstract:

Multiwall carbon nanotubes were grown inside the millimetric channels of commercial ceramic materials, cordierite monoliths, using a modified catalytic chemical vapor deposition method. Fe(CO)5 liquid catalyst precursor was introduced in gas phase at the same time as the acetylene carbon source to allow a more uniform distribution of carbon nanotubes on the substrate surface. Different techniques were used for the characterization of the obtained multiwall carbon nanotubes such as scanning and transmission electron microscopies, N2 adsorption isotherms, Raman spectroscopy and thermogravimetric analysis. The results show that the surface of the ceramic monolith is progressively covered with multiwall carbon nanotubes reaching total coverage for longer times under reaction. The carbon nanotubes were built up with a tree-like morphology. So, firstly larger carbon nanotubes are formed as the tree trunks on the cordierite surface, followed by the growing on them of narrower and longer nanotubes suggesting the tree branches.

You might also be interested in these eBooks

Info:

Periodical:

Journal of Nano Research (Volumes 18-19)

Pages:

271-279

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Zhanga, X. Zhanga, H. Suna, R. Liua, B. Wanga, Y. Lina, Pd-CNT-catalyzed ligandless and additive-free heterogeneous Suzuki-Miyaura cross-coupling of arylbromides, Tetrahedron Lett. 50 (2009) 4455-4458.

DOI: 10.1016/j.tetlet.2009.05.064

Google Scholar

[2] J. Xie1, Y. Tang, H. Zhang, A DFT study on the interaction between europium, uranium and SWCNT, Cent. Eur. J. Phys. 9 (2011) 716-721.

Google Scholar

[3] V.O. Cheranovskii, E.V. Ezerskaya, D.J. Klein, A.A. Kravchenko, Magnetic properties of model non-carbon nanotubes with macroscopic value of ground state spin, J. Magn. Magn. Mater. 323 (2011) 1636-1642.

DOI: 10.1016/j.jmmm.2011.01.027

Google Scholar

[4] M.M. Hussain, D. Song, Z. -S. Liu, Z. Xie, Modeling an ordered nanostructured cathode catalyst layer for proton exchange membrane fuel cells, J. Power. Sourc. 196 (2011) 4533- 4544.

DOI: 10.1016/j.jpowsour.2010.10.111

Google Scholar

[5] T. Tang, Z. Shi, Multiwalled Carbon Nantoubes-Reinforced Poly(hydroxyaminoether) Prepared by One Pot Graft-from Method, J. Appl. Polym. Sci. 120 (2011) 1758-1766.

DOI: 10.1002/app.33370

Google Scholar

[6] J. Zhao, X. Guo, Q. Guo, L. Gu, Y. Guo, F. Feng, Growth of carbon nanotubes on natural organic precursors by chemical vapor deposition, Carbon 49 (2011) 2155-2158.

DOI: 10.1016/j.carbon.2011.01.030

Google Scholar

[7] L.J. Lemus-Yegres, M. Pérez-Cadenas, M.C. Román-Martínez, C.S. -M. De Lecea, Hybrid Rh catalysts prepared with carbon nanotubes of different inner diameter, Micropor. Mesopor. Mater. 139 (2011) 164-172.

DOI: 10.1016/j.micromeso.2010.10.034

Google Scholar

[8] P. Serp, E. Castillejos, Catalysis in Carbon Nanotubes, ChemCatChem. 2 (2010) 41-47.

Google Scholar

[9] S. Yang, X. Li, W. Zhu, J. Wang and C. Descorme, Catalytic activity, stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol, Carbon 46 (2008) 445-452.

DOI: 10.1016/j.carbon.2007.12.006

Google Scholar

[10] I. Mazzarino and A.A. Barresi, Catalytic combustion of voc mixtures in a monolithic reactor, Catal. Today 17 (1993) 335-347.

DOI: 10.1016/0920-5861(93)80037-2

Google Scholar

[11] V. Martínez-Hansen, N. Latorre, C. Royo, E. Romeo, E. García-Bordejé and A. Monzón, Development of aligned carbon nanotubes layers over stainless steel mesh monoliths, Catal. Today 147 (2009) S71-S75.

DOI: 10.1016/j.cattod.2009.07.010

Google Scholar

[12] S. Morales-Torres, A.F. Perez-Cadenas, F. Kapteijn, F. Carrasco-Marin, F. J. MaldonadoHodar and J.A. Moulijn, Palladium and platinum catalysts supported on carbon nanofiber coated monoliths for low-temperature combustion of BTX, Appl. Catal. B: Environ. 89 (2009).

DOI: 10.1016/j.apcatb.2008.12.021

Google Scholar

[13] P. M. Ajayan, Nanotubes from Carbon, Chem. Rev. 99 (1999) 1787-1799.

Google Scholar

[14] O. Volotskova, I. Levchenko, A. Shashurin, Y. Raitses, K. Ostrikov, M. Keidar, Single-step synthesis and magnetic separation of graphene and carbon nanotubes in arc discharge plasmas, Nanoscale 2 (2010) 2281-2285.

DOI: 10.1039/c0nr00416b

Google Scholar

[15] T.S. Druzhinina, S. Hoeppener, U.S. Schubert, Microwave-assisted fabrication of carbon nanotube AFM tips, Nano Lett. 10 (2010) 4009-4012.

DOI: 10.1021/nl101934j

Google Scholar

[16] M. Bystrzejewski, M. H . Rümmeli, H. Lange, A. Huczko, P. Baranowski, T. Gemming, T. Pichler, Single-walled carbon nanotubes synthesis: A direct comparison of laser ablation and carbon arc routes, J. Nanosci. Nanotechnol. 8 (2008) 6178-6186.

DOI: 10.1166/jnn.2008.sw05

Google Scholar

[17] P. Sampedro-Tejedor, A. Maroto-Valiente, D. M. Nevskaia, V. Munoz, I. Rodriguez-Ramos and A. Guerrero-Ruiz, The effect of growth temperature and iron precursor on the synthesis of high purity carbon nanotubes, Diamond Relat. Mater. 16 (2007).

DOI: 10.1016/j.diamond.2006.11.056

Google Scholar

[18] L. Ci, J. Weia, B. Weia, J. Lianga, C. Xua and D. Wua, Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method, Carbon 39 (2001) 329-335.

DOI: 10.1016/s0008-6223(00)00126-3

Google Scholar

[19] J. Wang, R. Wang, X. Yu, J. Lin, F. Xie and K. Wei, Preparation and Characterization of Carbon Nanotubes-Coated Cordierite for Catalyst Supports, J. Natur. Gas Chem. 15 (2006) 211-216.

DOI: 10.1016/s1003-9953(06)60028-5

Google Scholar

[20] F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by Powders and Porous Solids, Academic Press, San diego, (1999).

DOI: 10.1002/vipr.19990110317

Google Scholar

[21] S. Inoue, N. Ichikuni, T. Suzuki, T. Uematsu, K. Kaneko, Capillary condensation of N2 on multi-wall carbon nanotube, J. Phys. Chem. B 102 (1998) 4689-4692.

DOI: 10.1021/jp973319n

Google Scholar

[22] F. Li, Y. Wang, D. Wang, F. Wei, Characterization of single-wall carbon nanotubes by N2 adsorption, Carbon 42 (2004) 2375-2383.

DOI: 10.1016/j.carbon.2004.02.025

Google Scholar

[23] Q. H. Yang, P. X., Hou, S. Bai, M.Z. Wang and H. M. Cheng, Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes, Chem. Phys. Lett. 345 (2001) 18-24.

DOI: 10.1016/s0009-2614(01)00848-x

Google Scholar

[24] Q. Jiang and Y. Zhao, Effects of activation conditions on BET specific surface area of activated carbon nanotubes, Micropor. Mesopor. Mater. 76 (2004) 215-219.

DOI: 10.1016/j.micromeso.2004.08.020

Google Scholar

[25] W.Z. Zhu, D.E. Miser, W.G. Chan and M.R. Hajaligol, Characterization of multiwalled carbon nanotubes prepared by carbon arc cathode deposit, Mater. Chem. Phys. 82 (2003) 638647.

DOI: 10.1016/s0254-0584(03)00341-9

Google Scholar

[26] A. Sadezky, H. Muckenhuber, H. Grothe and R. Niesser, Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information, Carbon 43 (2005) 1731-1742.

DOI: 10.1016/j.carbon.2005.02.018

Google Scholar

[27] M. Endo, K. Nishimura, Y.A. Kim, K. Hakamada and T. Matsuita, Raman spectroscopic characterization of submicron vapor-grown carbon fibers and carbon nanofibers obtained by pyrolyzing hydrocarbons, J. Mat. Res. 14 (1999) 4474-4477.

DOI: 10.1557/jmr.1999.0607

Google Scholar