Thermal Evolution of Compound Nanoparticles on Moulds Machined by Focused-Ion-Beam for Micro/Nano Lithography

Article Preview

Abstract:

Focused-ion-beam (FIB) milling is a modern fabrication technique by using focused energetic ions to ablate material and generate features with nanometer resolution. FIB system with Ga ion source was used in our lab to make moulds for laser-based micro/nano lithography. For FIB milling on glassy carbon, particles in the range of tens of nanometers up to 400 nm can often be found around the area subject to milling, with the composition of carbon and gallium. As the laser-based micro/nano lithography involves thermal process, it is important to identify the dynamic process of those compound nanoparticles during heat treatment. Glassy carbon moulds after FIB milling have been heated in air from room temperature up to 550 oC with temperature ramp rate of 10 oC/min. Scanning Electron Microscope (SEM) was used to record the morphology of the machined surface after heat treatments. Energy dispersive X-ray spectroscopy (EDS) was used for elemental analysis. Particles increase their size before the heating temperature reaches 200 oC. With further temperature increase, new particles nucleate, and grow at the neighbouring of the existing particles via coalescence and Ostwald ripening. When the temperature is over 400 oC, the morphology of nanoparticles changes, due to the evaporation of gallium. When the in air heating reaches 525 oC, cracking starts on the surface of glassy carbon. It is suggested that for in air lithographic application, heating temperature should not exceed 500 oC.

You might also be interested in these eBooks

Info:

Periodical:

Journal of Nano Research (Volumes 18-19)

Pages:

307-315

Citation:

Online since:

July 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. E. Franklin, Proc. Roy. Soc. A 209 (1951) 196.

Google Scholar

[2] G. M. Jenkins and K. Kawamura, Polymeric carbons—carbon fibre, glass and char, Cambridge, (1976).

Google Scholar

[3] P. J. F. Harris, Int. Mater. Rev. 42 (1997) 206.

Google Scholar

[4] P. J. F. Harris, Philosophical Magazine 84 (2004) 3159.

Google Scholar

[5] C. E. M. de Oliveira, M. M. G. de Carvalho, C. A. C. Mendonça, C. R. Miskys, G. M. Guadalupi, M. Battagliarin and M. I. M. S. Bueno, J. of Crystal Growth 186 (1998) 487.

DOI: 10.1016/s0022-0248(97)00815-4

Google Scholar

[6] M. Kuhnke, T. Lippert, E. Ortelli, G. G. Scherer, and A. Wokaun, Thin Solid Films 453-454 (2004) 36.

DOI: 10.1016/j.tsf.2003.11.156

Google Scholar

[7] M. Takahashi, K. Sugimoto, and R. Maeda, Jpn. J. Appl. Phys. 44 (2005) 5600.

Google Scholar

[8] S. W. Youn, M. Takahashi, H. Goto, and R. Maeda, Microelectron. Eng. 83 (2006) 2482.

Google Scholar

[9] S. W. Youn , M. Takahashi , H. Goto , and R. Maeda, J. Micromech. Microeng. 16 (2006) 2576.

Google Scholar

[10] S. W. Youn , M. Takahashi , H. Goto , T. Kobayashi and R. Maeda, J. Micromech. Microeng. 16 (2006) 1277.

Google Scholar

[11] S. W. Youn, A. Ueno, M. Takahashi and R. Maeda, J. Micromech. Microeng. 19 (2009) 125010.

Google Scholar

[12] M. J. Vasile, R. Nassar, J. Xie and H. Guo, Micron 30 (1999) 235.

Google Scholar

[13] AA Tseng, J. Micromech. Microeng. 14 (2004) R15.

Google Scholar

[14] Q. Hu and W. O'Neill, Appl. Surf. Sci. 256 (2010) 5952.

Google Scholar

[15] Q. Hu and W. O'Neill, J. Nanosci. Nanotechno., doi: 10. 1166/jnn. 2011. 3773, 11 (2011) (in press).

Google Scholar

[16] Hochtemperatur Werkstoffe GmbH: http: /www. htw-germany. com/ technology . php5?lang=en&nav0=2.

Google Scholar

[17] T. Ishitani and H. Kaga, J. Electron. Microsc. 44 (1995) 331.

Google Scholar

[18] Y. M. Park, D. -S. Ko, K. -W. Yi, I. Petrov and Y. -W. Kim, Ultramicroscopy 107 (2007) 663.

Google Scholar

[19] N. Shukla, S. K. Tripathi, A. Banerjee, A. S. V. Ramana, N. S. Rajput, V. N. Kulkarni, Appl. Surf. Sci. 256 (2009) 475.

Google Scholar

[20] D. R. Lide, Handbook of Chemistry and Physics, 89th ed., CRC, (2008).

Google Scholar

[21] J. V. Naidich and J. N. Chuvashov, J. Mater. Sci. 18 (1983) (2071).

Google Scholar

[22] M. Tamura, Mater. Sci. Rep. 6 (1991) 141.

Google Scholar

[23] W. F. van Dorp and C. W. Hagen, J. Appl. Phys. 104 (2008) 081301.

Google Scholar

[24] M. Mikkelsen, E. Hilner, J. N. Andersen, S. Ghatnekar-Nilsson, L. Montelius and A. A. Zakharov, Nanotechnology 20 (2009) 325304.

DOI: 10.1088/0957-4484/20/32/325304

Google Scholar

[25] J. P. Biersack, L. G. Haggman, Nucl. Instrum. Method 174 (1980) 257.

Google Scholar

[26] M. Shibata, S. S. Stoyanov and M. Ichikawa, Phys. Rev. B 59 (1999) 10289.

Google Scholar

[27] D. Z. Xie, B. K. A. Ngoi, W. Zhou and Y. Q. Fu, Appli. Surf. Sci. 227 (2004) 250.

Google Scholar

[28] R. Batabyal, S. Patra, A. Roy, S. Roy, L. Bischoff and B. N. Dev, Appli. Surf. Sci. 256 (2009) 536.

Google Scholar

[29] M. Zinke-Allmang, L. C. Feldman and M. H. Grabow, Surf. Sci. Rep. 16 (1992) 377.

Google Scholar

[30] M. Zinke-Allmang, Thin Solid Films 346 (1999) 1.

Google Scholar

[31] Q. Hu, M. Zinke-Allmang and I. V. Mitchell, Jpn. J. Appl. Phys. 40 (2001) 6029.

Google Scholar

[32] Q. Hu and M. Zinke-Allmang, J. Vac. Sci. Technol. A 20 (2002) 1023.

Google Scholar

[33] J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, J. F. Mansfield and R. S. Goldman, Appl. Phys. Lett. 95 (2009) 153107.

Google Scholar

[34] K. L. Carleton and S. R. Leone, J. Vac. Sci. Technol. B 5 (1987) 1141.

Google Scholar

[35] B. Bourguignon, K. L. Carleton, and S. R. Leone, Surf. Sci. 204 (1988) 455.

Google Scholar

[36] A. Portavoce, R. Hull, M. C. Reuter and F. M. Ross, Phys. Rev. B 76 (2007) 235301.

Google Scholar

[37] Q. Hu and P. Chopra, Optics and Lasers in Engineering 49 (2011) 498.

Google Scholar