[1]
X. Su, B. Yan, H. Huang, In situ co-precipitation synthesis and luminescence of GdVO4: Eu3+ and YxGd1−xVO4: Eu3+ microcrystalline phosphors derived from the assembly of hybrid precursors, J. Alloys Compd. 399 (2005) 251-255.
DOI: 10.1016/j.jallcom.2005.03.059
Google Scholar
[2]
J.S. Bae, J.P. Kim, J.H. Yoon, M.S. Won, K.S. Shim, J.H. Jeong, S.S. Yi, K.H. Kim, Structural and luminescent properties of Eu-doped GdVO4 thin-film phosphors grown on various substrates by using pulsed laser deposition, J. Korean Phys. Soc. 51 (2007).
DOI: 10.3938/jkps.51.572
Google Scholar
[3]
B. Liu, C. Shi, Q. Zhang, Y. Chen, Temperature dependence of GdVO4: Eu3+ luminescence, J. Alloys Compd. 333 (2002) 215-218.
DOI: 10.1016/s0925-8388(01)01711-x
Google Scholar
[4]
K. Riwotzki, M. Haase, Wet-chemical synthesis of doped colloidal nanoparticles: YVO4: Ln (Ln = Eu, Sm, Dy), J. Phys. Chem. B 102 (1998) 10129-10135.
DOI: 10.1021/jp982293c
Google Scholar
[5]
A.K. Levine, F.C. Palilla, A new, highly efficient red-emitting cathodoluminescent phosphor (YVO4: Eu) for color television, Appl. Phys. Lett. 5 (1964) 118-120.
DOI: 10.1063/1.1723611
Google Scholar
[6]
R.A. Fields, M. Birnbaum, C.L. Fincher, Highly efficient Nd: YVO4 diode-laser end-pumped laser, Appl. Phys. Lett. 51 (1987) 1885-1886.
DOI: 10.1063/1.98500
Google Scholar
[7]
J.S. Bae, S.S. Yi, J.H. Kim, Y.S. Kim, Crystalline and cathodoluminescent characteristics of Li-doped GdVO 4: Eu3+ red phosphor powders, J. Korean Phys. Soc. 49 (2006) 860-864.
Google Scholar
[8]
R.C. Ropp, Spectra of some rare earth vanadates, J. Electrochem. Soc. 115 (1968) 940-945.
DOI: 10.1149/1.2411481
Google Scholar
[9]
Y.S. Chang, F.M. Huang, Y.Y. Tsai, L.G. Teoh, Synthesis and photoluminescent properties of YVO4: Eu3+ nano-crystal phosphor prepared by Pechini process, J. Lumin. 129 (2009) 1181-1185.
DOI: 10.1016/j.jlumin.2009.05.020
Google Scholar
[10]
JCPDS file No. 17-0260.
Google Scholar
[11]
B.D. Cullity, Elements of X-ray Diffraction, Addison-Wesley, Reading, MA, (1978).
Google Scholar
[12]
N.G. Eror, H.G. Anderson, Polymeric precursor synthesis of ceramic materials, Mater. Res. Soc. Proc. 73 (1986) 571-577.
Google Scholar
[13]
A. Vecht, C. Gibbons, D. Davies, X. Jing, P. Marsh, T. Ireland, J. Silver, A. Newport, D. Barber, Engineering phosphors for field emission displays, J. Vac. Sci. Technol. B 17 (1999) 750-757.
DOI: 10.1116/1.590633
Google Scholar
[14]
R. Reisfeld, C.K. Jorgensen, Lasers and Excited States of Rare Earths, Springer-Verlag, Berlin, Germany, (1977).
Google Scholar
[15]
L. Wang, Y. Wang, Enhanced photoluminescence of YBO3: Eu3+ with the incorporation of Sc3+, Bi3+ and La3+ for plasma display panel application, J. Lumin. 122-123 (2007) 921-923.
DOI: 10.1016/j.jlumin.2006.01.327
Google Scholar
[16]
X. Wu, H. You, H. Cui, X. Zeng, G. Hong, C.H. Kim, C.H. Pyun, B.Y. Yu, C.H. Park, Vacuum ultraviolet optical properties of (La, Gd)PO4: RE3+ (RE=Eu, Tb), Mater. Res. Bull. 37 (2002) 1531-1538.
DOI: 10.1016/s0025-5408(02)00860-7
Google Scholar
[17]
D.L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys. 21 (1953) 836 -850.
Google Scholar
[18]
D.L. Dexter, J.H. Schulman, Theory of concentration quenching in inorganic phosphors, J. Chem. Phys. 22 (1954) 1063-1070.
Google Scholar
[19]
Y. Wang, Y. Zuo, H. Gao, Luminescence properties of nanocrystalline YVO4: Eu3+ under UV and VUV excitation, Mater. Res. Bull. 41 (2006) 2147-2153.
DOI: 10.1016/j.materresbull.2006.03.034
Google Scholar
[20]
C. Lin, D. Kong, X. Liu, H. Wang, M. Yu, J. Lin, Monodisperse and core−shell-structured SiO2@YBO3: Eu3+ spherical particles: synthesis and characterization, Inorg. Chem. 46 (2007) 2674-2681.
DOI: 10.1021/ic062318j.s001
Google Scholar