Electrochromic Properties of Nanoporous α and β Nickel Hydroxide Thin Films Obtained by Chemical Bath Deposition

Article Preview

Abstract:

Nickel hydroxide nanoporous electrochromic thin films were obtained by chemical bath deposition method using nickel nitrate in two different formulations. In one case, ammonium hydroxide controlled the precipitation of the β-Ni (OH)2 phase through the formation of coordination compounds. In the second case, the decomposition of urea yielded the α-Ni (OH)2 phase. After thermal annealing in air in between 250 and 300 °C, the electrochromic behavior of the films was examined by cyclic voltammetry and single wavelength transmittance. The optical contrast and structural transformations between colored and bleached states of the samples were studied by ex-situ optical transmittance, X-ray diffraction, as well as Raman and infrared reflectance spectroscopies. The α-Ni (OH)2 films showed higher optical contrast and reversibility, properties associated with their porous morphology which is revealed by scanning electron microscopy studies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-72

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.G. Granqvist, Oxide electrochromics: An introduction to devices and materials, Sol. Energy Mater. Sol. Cells 99 (2012) 1-13.

Google Scholar

[2] C.G. Granqvist, P.C. Lanaker. N. R. Mlyuka, G.A. Niklasson, E. Avendaño, Progress in chromogenics: New results for electrochromic and thermochromic materials and devices, Sol. Energy Mater. Sol. Cells 93 (2009) 2032-2039.

DOI: 10.1016/j.solmat.2009.02.026

Google Scholar

[3] S.V. Green, M. Watanabe, N. Oka, G.A. Niklasson, C.G. Granqvist, Y. Shigesato, Electrochromic properties of nickel oxide based thin films sputter deposited in the presence of water vapor, Thin solid films 520 (2012) 3839-3842.

DOI: 10.1016/j.tsf.2011.08.030

Google Scholar

[4] I. Bouessay, A. Rougier, P. Poizot, J. Moscovici, A. Michalowicz, J.-M. Tarascon, Electrochromic degradation in nickel oxide thin film: A self-discharge and dissolution phenomenon, Electrochim. Acta 50 (2005) 3737-3745.

DOI: 10.1016/j.electacta.2005.01.020

Google Scholar

[5] R. Cerc-Korošec, P. Bukovec, The role of thermal analysis in optimization of the electrochromic effect of nickel oxide thin films, prepared by the sol–gel method: Part II, Thermochim. Acta 410 (2004) 65-71.

DOI: 10.1016/s0040-6031(03)00373-3

Google Scholar

[6] S.H. Lin, F.R. Chen, J.J. Kai, Electrochromic properties of nano-structured nickel oxide thin film prepared by spray pyrolysis method, Applied Surface Science 254 (2008) 2017–2022.

DOI: 10.1016/j.apsusc.2007.08.029

Google Scholar

[7] K. Nakaoka, J. Ueyama, K. Ogura, Semiconductor and electrochromic properties of electrochemically deposited nickel oxide films, J. Electroanal. Chem. 571 (2004) 93-99.

DOI: 10.1016/j.jelechem.2004.05.003

Google Scholar

[8] D.S. Dalavi, M.J. Suryavanshi, D.S. Patil, S.S. Mali, A.V. Moholkar, S.S. Kalagi, S.A. Vanalkar, S.R. Kang, J.H. Kim, P.S. Patil, Nanoporous nickel oxide thin films and its improved electrochromic performance: Effect of thickness, Applied Surface Science 257 (2011) 2647–2656.

DOI: 10.1016/j.apsusc.2010.10.037

Google Scholar

[9] P. Oliva, J. Leonardi, J. F. Laurent, C. Delmas, J. J. Braconnier, M. Fligarz, F. Fievet, A. de Guibert, Review of the structure and the electrochemestry of nickel hydroxides and oxy-hydroxides, J. Power Sources 8 (1982) 229.

DOI: 10.1016/0378-7753(82)80057-8

Google Scholar

[10] A. Delahaye-Vidal, B. Beaudoin, N. Sac-Epée, K. Tekaia-Elhsissen, A. Audemer, M. Figlarz, Structural and textural investigations of the nickel hydroxide electrode, Solid State Ionics, 84 (1996) 239.

DOI: 10.1016/0167-2738(96)00030-6

Google Scholar

[11] W. K. Hu, D. Noréus, Alpha nickel hydroxides as lightweight nickel electrode materials for alkaline rechargeable cells, Chem. Mater. 15 (2003) 974-978.

DOI: 10.1021/cm021312z

Google Scholar

[12] A. Mendoza-Galván, M.A. Vidales-Hurtado, Electrochromic nickel oxide-based thin films deposited by chemical bath, Trans Tech Publications, 55 (2008) 24-29.

Google Scholar

[13] M.A. Vidales-Hurtado, A. Mendoza-Galván, Electrochromism in nickel oxide-based thin films obtained by chemical bath deposition, Solid State Ionics, 179 (2008) 2065-2068.

DOI: 10.1016/j.ssi.2008.07.003

Google Scholar

[14] R.M. Torresi, M.V. Vázquez, A. Gorenstein, S.I. Córdoba de Torresi, Infrared characterization of electrochromic nickel hydroxide prepared by homogeneous chemical precipitation, Thin Solid Films 229 (1993) 180-186.

DOI: 10.1016/0040-6090(93)90361-r

Google Scholar

[15] M.A. Vidales-Hurtado, A. Mendoza-Galván, Optical and structural characterization of nickel oxide-based thin films obtained by chemical bath deposition, Mater. Chem. Phys. 107 (2008) 33-38.

DOI: 10.1016/j.matchemphys.2007.06.036

Google Scholar

[16] W.K. Hu, X.P. Gao, D. Noréus, T. Burchardt, N. K. Nakstad, Evaluation of nano-crystal sized α-nickel hydroxide as an electrode material for alkaline rechargeable cells, Journal of Power Sources 160 (2006) 704–710.

DOI: 10.1016/j.jpowsour.2006.01.048

Google Scholar

[17] Y. Luo, G. Duan, G. Li, Synthesis and characterization of flower-like β-Ni(OH)2 nanoarchitectures, Journal of Solid State Chemistry 180 (2007) 2149–2153.

DOI: 10.1016/j.jssc.2007.05.025

Google Scholar

[18] J. Ederth, P. Johnsson, G. A. Niklasson, A. Hoel, A. Hultaker, P. Heszler, C. G. Granqvist, A. R. van Doorn, M. J. Jongerius, D. Burgard, Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles, Physical Review B 68 (2003) 155410-1.

DOI: 10.1103/physrevb.68.155410

Google Scholar

[19] R. Kostecki, F. McLarnon, Electrochemical and in situ Raman spectroscopic characterization of nickel hydroxide electrodes, J. Electrochem. Soc. 144 (1997) 485-493.

DOI: 10.1149/1.1837437

Google Scholar

[20] F.P. Kober, Analysis of the charge-discharge characteristics of nickel-oxide electrodes by infrared spectroscopy, J. Electrochem. Soc. 112 (1965) 1064-1067.

DOI: 10.1149/1.2423361

Google Scholar

[21] G.A. Niklasson, C.G. Granqvist, Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these, J. Mater. Chem. 17 (2007) 127-156.

DOI: 10.1039/b612174h

Google Scholar

[22] A. Al-Kahlout, M.A. Aegerter, Coloration mechanisms of sol–gel NiO–TiO2 layers studied by EQCM, Sol. Energy Mater. Sol. Cells 91 (2007) 213–223.

DOI: 10.1016/j.solmat.2006.08.003

Google Scholar

[23] S.I. Cordoba-Torresi, A. Hugot-Le Goff, S. Joiret, Electrochromic behavior of nickel oxide electrodes: II. Identification of the bleached states by Raman spectroscopy and nuclear reactions, J. Electrochem. Soc. 138 (1991) 1554-1559.

DOI: 10.1149/1.2085831

Google Scholar

[24] Y.L. Lo, B.J. Hwang, In situ Raman studies on cathodically deposited nickel hydroxide films and electroless Ni-P electrodes in 1 M KOH solution, Langmuir 14 (1998) 944-950.

DOI: 10.1021/la9600255

Google Scholar

[25] C. Johnston, P.R. Graves, In situ Raman spectroscopy study of the nickel oxyhydroxide electrode (NOE) system, Appl. Spectrosc. 44 (1990) 105-115.

DOI: 10.1366/0003702904085769

Google Scholar