Synthesis and Characterization of SnS Nanoparticles through a Non-Aqueous Chemical Route for Depositing Photovoltaic Absorber Layers

Article Preview

Abstract:

SnS nanocrystals of sub-10 nm in size were synthesized by a room temperature, non-aqueous chemical route in the presence of different amounts of triethanolamine (TEA) used as a complexing agent. The crystallinity, size, morphology, chemical composition and optical properties of the as-prepared SnS nanoparticles were investigated by powder X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Energy-dispersive X-ray spectroscopy (EDS), micro Raman and optical absorption spectroscopy. The XRD analysis and HRTEM investigation of SnS nanoparticles confirmed the presence of crystalline orthorhombic SnS phase. Upon increasing the amount of TEA, the crystallite size of the samples decreased gradually showing evidence of quantum confinement. EDS analysis showed that SnS nanoparticles (NPs) grown in absence of TEA were highly stoichiometric whereas in TEA capped samples, the atomic concentration of S is slightly higher than that of Sn. As-synthesized SnS nanocrystals displayed strong absorption in the visible and near-infrared spectral regions followed by a blue shift of their absorption edge on increasing the TEA concentration. These nanoparticles were used to prepare SnS paste which was deposited on conducting glass substrates to obtain thin films for photovoltaic applications. The crystallinity, morphology, chemical composition and optical properties of annealed SnS films were investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-99

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.K. Oh, J.M. Park, Progress in polymer Science. Vol. 36 (2011), p.168.

Google Scholar

[2] A. Kunzmann, B. Andersson, T. Thurnherr, H. Krug,A. Scheynius, B. Fadeel, Biochimicaet Biophysica Acta. Vol. 1810 (2011), p.361.

DOI: 10.1016/j.bbagen.2010.04.007

Google Scholar

[3] D. Ho, S. Chang C.D. Montemagno, Nanomedicine: Nanotechnology,Biology, and Medicine. Vol. 2 (2006), p.103.

Google Scholar

[4] B. Perez- López,A. Merkoci, Trends in Food Science & Technology. Vol. 22(2011), p.625.

Google Scholar

[5] C. Jianrong, M. Yuqing, H. Nongyue , W. Xiaohua , L. Sijiao, Biotechnology Advances.Vol. 22 (2004), p.505.

DOI: 10.1016/j.biotechadv.2004.03.004

Google Scholar

[6] K. Scida, P. W. Stege, G. Haby, G.A. Messina, C. D.García, Analytica Chimica Acta. Vol. 691 (2011), p.6.

DOI: 10.1016/j.aca.2011.02.025

Google Scholar

[7] S. Guo, E. Wang, Nano Today. Vol. 6 (2011), p.240.

Google Scholar

[8] R.Yu, Q. Lin, S. F. Leung, Z. Fan, Nano Energy. Vol. 1 (2012), p.57.

Google Scholar

[9] Y. Xu, X. Fang, Z. Zhang, Applied Surface Science. Vol. 255 (2009), p.8743.

Google Scholar

[10] J. Jie, W. Zhang, I. Bello, C-S. Lee, S-T Lee, NanoToday. Vol. 5 (2010), p.313.

Google Scholar

[11] T-P. Nguyen, Surface and Coatings Technology. Vol.206 (2011), p.742.

Google Scholar

[12] Z. Wang, S. Qu, X. Zeng, J. Liu, C. Zhang, F. Tan, L. Jin, Z. Wang, Journal of Alloys and Compounds. Vol. 482 (2009), p.203.

Google Scholar

[13] K. T. Reddy, N. K. Reddy, and R. W. Miles, Sol. Energy Mater. Sol. Cells. Vol. 90 (2006), p.3041.

Google Scholar

[14] P. Tang, H. Chen, F. Cao, G. Pan, K. Wang, M. Xu, Y. Tong, Materials Letters. Vol. 65 (2011), p.450.

Google Scholar

[15] N. K. Reddy, Y.B. Hahn, J. Appl. Phys. Vol. 101 (2007), p.093522.

Google Scholar

[16] P. M. Nikolic, D M Todorovic, Journal of Physics C: Solid State Physics. Vol. 20

Google Scholar

[17] (1987). P. 39.

Google Scholar

[18] Y. Li, J.P. Tu, H.M. Wu, Y.F. Yuan, D.Q. Shi, Materials Science and Engineering B.

Google Scholar

[19] Vol. 128 (2006), p.75.

Google Scholar

[20] R. W. Miles, O. E. Ogah, G. Zoppi, I. Forbes, Thin Solid Films. Vol. 517 (2009), p.4702.

DOI: 10.1016/j.tsf.2009.03.003

Google Scholar

[21] Y. Xu, N. Al-Salim, C.W. Bumby, R.D. Tilley, J. Am. Chem. Soc. Vol.131 (2009), p.15990.

Google Scholar

[22] C. Gao, H. Shen, L. Sun, Applied Surface Science. Vol. 257 (2011), p.6750.

Google Scholar

[23] D. S. Koktysh,, J. R. McBride, R. D. Geilb,, B. W. Schmidt, B. R. Rogers, S. J. Rosenthal, Materials Science and Engineering B. Vol. 170 (2010), p.117.

Google Scholar

[24] J. Ning, K. Men, G. Xiao, L. Wang, Q. Dai, B. Zou,B. Liu,G. Zou, Nanoscale. Vol. 2 (2010), p.1699.

Google Scholar

[25] A. Tanusevski, D. Poelman, Sol. Energy Mater. Sol. Cells. Vol. 80 (2003), p.297.

Google Scholar

[26] H. Zhu, D. Yang, H. Zhang, Materials Letters. Vol. 60 (2006), p.2686.

Google Scholar

[27] W. Cai, J. Hu, Y. Zhao, H. Yang, J. Wang, W. Xiang, Advanced Powder Technology. Vol. 23 (2012), p.850.

Google Scholar

[28] H. Tang, J. Yu, X. Zhao, Journal of Alloys and Compounds. Vol. 460 (2008), p.513.

Google Scholar

[29] S. Sohila, M. Rajalakshmi, C. Muthamizhchelvan, S. Kalavathi, C. Ghosh, R. Divakar, C.N. Venkiteswaran, N.G. Muralidharan, A.K. Arora, E. Mohandas, Material Letters. Vol. 65 (2011), p.1148.

DOI: 10.1016/j.matlet.2010.12.029

Google Scholar

[30] Y. Xu, N. Salim, C.W. Bumby, R.D. Tilley. J. Am. Chem. Soc.Vol. 131 (2009), p.15990.

Google Scholar

[31] Y. Xu, N. Salim, R.D. Tilley, Nanomaterials. Vol.2 (2012), p.54.

Google Scholar

[32] L. S. Price, I. P. Parkin, A. M. Hardy, and R. J. Clark, Chem. Mater. Vol.11 (1999), p.1792.

Google Scholar

[33] H. R. Chandrasekhar, R. G. Humphreys, U. Zwick, and M. Cardona, Physical Review B. Vol. 15 (1977), p.2177.

Google Scholar

[34] S. Sohila, M. Rajalakshmi, C. Ghosh, A.K. Arora, C. Muthamizhchelvan, Journal of Alloys and Compounds. Vol. 509 (2011), p.5843.

DOI: 10.1016/j.jallcom.2011.02.141

Google Scholar

[35] D. S. Koktysh , J. R. McBride, S. J. Rosenthal, Nanoscale Research Letter. Vol. 2 (2007), p.144.

Google Scholar