Infrared Plasmonics via ZnO

Article Preview

Abstract:

Conventional plasmonic devices involve metals, but metal-based plasmonic resonances are mainly limited to λres < 1 μm, and thus metals interact effectively only with light in the UV and visible ranges. We show that highly doped ZnO can exhibit λres ≥ 1 μm, thus moving plasmonics into the IR range. We illustrate this capability with a set of thin (d = 25–147 nm) Al-doped ZnO (AZO) layers grown by RF sputtering on quartz glass. These samples employ a unique, 20-nm-thick, ZnON buffer layer, which minimizes the strong thickness dependence of mobility (μ) on thickness (d). A practical waveguide structure, using these measurements, is simulated with COMSOL Multiphysics software over a mid-IR wavelength range of 4–10 μm, with a detailed examination of propagation loss and plasmon confinement dimension. In many cases, Lplas < λlight, thus showing that IR light can be manipulated in semiconductor materials at dimensions below the diffraction limit.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-119

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. L. Barnes, A. Dereux, and T. W. Ebbessen, "Surface plasmon subwavelength optics," Nature 424, (2003) 824-830

DOI: 10.1038/nature01937

Google Scholar

[2] G. Wang, H. Lu, and X. Liu, "Trapping of surface plasmon waves in graded grating waveguide system" Appl. Phys. Lett. 101, (2012) 013111

DOI: 10.1063/1.4733477

Google Scholar

[3] G. Wang, H. Lu, and X. Liu, "Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency," Opt. Express 20, (2012) 20902-20907

DOI: 10.1364/oe.20.020902

Google Scholar

[4] P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, (1972) 4370-4379

DOI: 10.1103/physrevb.6.4370

Google Scholar

[5] S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, "Recent progress in processing and properties of ZnO", Progress in Materials Science 50(3), (2005) 293-340

DOI: 10.1016/j.pmatsci.2004.04.001

Google Scholar

[6] J.A. Dionne and H.A. Atwater "Plasmonics: Metal-worthy methods and materials in nanophotonics. MRS Bulletin, 37, (2012) 717-724

DOI: 10.1557/mrs.2012.171

Google Scholar

[7] P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, and A. Boltasseva, "Searching for better plasmonic materials", Laser & Photonics Reviews, 4( 6), (2010) 795-808.

DOI: 10.1002/lpor.200900055

Google Scholar

[8] S. Garry, E. McCarthy, J. P. Mosnier, and E. McGlynn, "Control of ZnO nanowire arrays by nanosphere lithography (NSL) on laser-produced ZnO substrates," Applied Surface Science , 257, (2011) 5159-5162.

DOI: 10.1016/j.apsusc.2010.11.182

Google Scholar

[9] M.A. Noginov, L. Gu, J. Livenere, G. Zhu, A.K. Pradhan, R. Mundle, M. Bahoura, Yu.A. Barnakov, and V.A. Podolskiy, "Transparent conductive oxides: Plasmonic materials for telecom wavelengths," Appl. Phys. Lett. 99, (2011) 021101

DOI: 10.1063/1.3604792

Google Scholar

[10] J.B. Khurgin and A. Boltasseva, "Reflecting upon the losses in plasmonics and metamaterials," MRS Bulletin 37, 769 (2012).

DOI: 10.1557/mrs.2012.173

Google Scholar

[11] D.C. Look, T.C. Droubay, and S.A. Chambers, "Stable highly conductive ZnO via reduction of Zn vacancies," Appl. Phys. Lett. 101, (2012) 102101

DOI: 10.1063/1.4748869

Google Scholar

[12] D.C. Look, T.C. Droubay, and S.A. Chambers, "Optical/electrical correlations in ZnO: The plasmonic resonance phase diagram," Physica Status Solidi (to be published).

DOI: 10.1002/pssb.201200968

Google Scholar

[13] T. Minami, "Transparent conducting oxide semiconductors for transparent electrodes," Semicond. Sci. Technol. 20, (2005) S35

DOI: 10.1088/0268-1242/20/4/004

Google Scholar

[14] 1A. Suzuki, M. Nakamura, R. Michihata, T. Aoki, T. Matsushita, and M. Okuda, "Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition," Thin Solid Films 512, (2008)1478

DOI: 10.1016/j.tsf.2008.09.024

Google Scholar

[15] T. Minami and T. Miyata, "Present status and future prospects for development of non- or reduced-indium transparent conducting oxide thin films," Thin Solid Films 517, (2008) 1474

DOI: 10.1016/j.tsf.2008.09.059

Google Scholar

[16] D.C. Look, K.D. Leedy, D.H. Tomich, and B. Bayraktaroglu, "Mobility analysis of highly conducting thin films: Application to ZnO," Appl. Phys. Lett. 96, (2010) 062102

DOI: 10.1063/1.3310043

Google Scholar

[17] T. Yamada, H. Makino, N. Yamamoto, and T. Yamamoto, "Ingrain and grain boundary scattering effects on electron mobility of transparent conducting polycrystalline Ga-doped ZnO films," J. Appl. Phys. 107, (2010), 123534

DOI: 10.1063/1.3447981

Google Scholar

[18] N. Itagaki, K. Kuwahara, K. Nakahara, D. Yamashita, G. Uchida, K. Koga, and M. Shiratani, "Highly Conducting and Very Thin ZnO:Al Films with ZnO Buffer Layer Fabricated by Solid Phase Crystallization from Amorphous Phase,"Appl. Phys. Exp. 4, (2011) 011101.

DOI: 10.1143/apex.4.011101

Google Scholar

[19] N. Itagaki, K. Kuwahara, K. Matsushima, and K. Oshikawa, "Novel fabrication method for ZnO films via nitrogen-mediated crystallization," Proc. of SPIE 8263, (2012) 826306-1

DOI: 10.1117/12.911971

Google Scholar

[20] K. Kuwahara, N. Itagaki, K. Nakahara, D. Yamashita, G. Uchida, K. Kamataki, K. Koga, and M. Shiratani, "High quality epitaxial ZnO films grown on solid-phase crystallized buffer layers," Thin Solid Films 520, 4674 (2012).

DOI: 10.1016/j.tsf.2011.10.136

Google Scholar

[21] B.L. Zhu, J. Wang, S.J. Zhu, J. Wu, D.W. Zeng, and C.S. Xie, "Thickness study of AZO films by RF sputtering in Ar + H2 atmosphere at room temperature," Phys. Stat. Solidi A 209, (2012) 1251

DOI: 10.1002/pssa.201228014

Google Scholar

[22] G. Naik, J. Kim, and A. Boltasseva, "Oxides and nitrides as alternative plasmonic materials in the optical range," Optical Materials 9, (2011) 1090-1099

DOI: 10.1364/ome.1.001090

Google Scholar

[23] S. Ishii, G. Naik, N. Emani, V. Shalaev, A. Boltasseva, and P. West, "Searching for Better Plasmonic Materials," Laser Photonics Reviews 4, (2009) 795-808

DOI: 10.1002/lpor.200900055

Google Scholar

[24] D.C. Look, K.D. Leedy, A. Kiefer, B. Claflin, N. Itagaki, K. Matsushima, and I. Surhariadi, "Model for thickness dependence of mobility and concentration in highly conductive ZnO", Optical Engineering, 52(3), (2013) 033801.

DOI: 10.1117/1.oe.52.3.033801

Google Scholar

[25] R. Lahoud, G. Mattiussi, P. Berini, P. Charbonneau, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Optics Express 13, (2005) 977-984

DOI: 10.1364/opex.13.000977

Google Scholar

[26] K. Manabe, H. Umezu, N. Mori, I., Ushiro, and T. Tominaga, "Film properties of ZnO:Al prepared by cosputtering of ZnO:Al and either Zn or Al targets," Thin Solid Films 15, (1997) 1074-1079

DOI: 10.1116/1.580432

Google Scholar

[27] J. Guo and R. Adato, "Extended long range plasmon waves in finite thickness metal film and layered dielectric materials," Optics Express 14, (2006) 12409-12418

DOI: 10.1364/oe.14.012409

Google Scholar

[28] K. Diest, H. Atwater and A. Feigenbaum, "Unity-order index change in transparent conducting oxides at visible frequencies," Nano Letters 10, (2010) 2111-2116

DOI: 10.1021/nl1006307

Google Scholar

[29] A. Degiron, C. Dellagiacoma, J. G. McIlhargey, G. Shvets, O. J. F. Martin, and D. R. Smith, "Simulations of hybrid long-range plasmon modes with application to 90° bends," Optics Letters 32, (2007) 2354-2356

DOI: 10.1364/ol.32.002354

Google Scholar

[30] G. V. Naik, V. M. Shalaev, and A. Boltasseva, "Semiconductor plasmonic metamaterials for near-infrared and telecommunication wavelength," Proceedings of SPIE 7754, (2010) 77540

DOI: 10.1117/12.863631

Google Scholar

[31] K. Mientus and R. Ellmer, "Carrier transport in polycrystalline ITO and ZnO:Al II: The influence of grain barriers and boundaries," Thin Solid Films 516, (2008) 5829-5835

DOI: 10.1016/j.tsf.2007.10.082

Google Scholar

[32] M. Lorenz, "Optical and electrical properties of epitaxial (Mg,Cd)xZn1−xO, ZnO, and ZnO:(Ga,Al) thin films on c-plane sapphire grown by pulsed laser deposition," Solid State Electronics 47, (2003) 2205-2209

DOI: 10.1016/s0038-1101(03)00198-9

Google Scholar

[33] P. Charbonneau, R. Lahoud, G. Mattiussi, and P. Berini, "Characterization of long-range surface-plasmon-polariton waveguides," Journal of Applied Physics 98, (2005) 043109

DOI: 10.1063/1.2008385

Google Scholar

[34] J. A. Dionne, L. A. Sweatlock and H. A. Atwater, "Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model," Physical Review B 72, (2005) 0754051- 07540511

DOI: 10.1103/physrevb.72.075405

Google Scholar

[35] I. Lee, J. Jung, J. Park, H. Kim, and B. Lee, "Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves," Optics Express 15, (2007) 16596-16603

DOI: 10.1364/oe.15.016596

Google Scholar