A Simple Low Temperature and Pressure Method for the Synthesis of Quasi-One Dimensional Nano Structures of TiO2 for Dye Synthesized Solar Cells

Article Preview

Abstract:

In this work we have synthesized TiO2 nanostructures using a modified autoclave-free hydrothermal method from bulk powders. In the absence of pressure, Toluene was used as the dispersing agent to prohibit particle aggregation during the thermal treatment. Toluene to Ti mole ratio (X) was varied from 0 up to 30 to obtain different morphologies of TiO2. X-ray diffraction (XRD) analysis demonstrated the Anatase phase for all the samples. FTIR analysis indicated that samples are free of carbon rich compounds and carbon contaminants. SEM images showed that with the increase of Toluene to Ti ratio, the morphology of the powders change from spherical particles with an average size of about 45 nm for X=0 to broccoli-shape structure for X=10, nanotubes for X=20 and nanosticks/wires for X=30. The synthesized TiO2 nanotubes have been used as photoanode in a dye synthesized solar cell (DSSCs). The efficiency of the fabricated solar cell without any further modification was obtained about 2.3%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-129

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A. Khan, H.T. Jung, O.B. Yang; J Phys Chem B. 6;110(13): (2006)6626-30.

Google Scholar

[2] J.W. Zhang, Y. Wang, Z.S. Jin, Z.S. Wu, Z.J. Zhang, Appl. Surf. Sci. 254, (2008)4462.

Google Scholar

[2] D. Wang, F. Zhou, Y. Liu, W.M. Liu, Mater. Lett. 62, (2008)1819.

Google Scholar

[4] N. Wang, H. Lin, J.B. Li, X.Z. Yang, B. Chi, Thin Solid Films 496, (2006) 649.

Google Scholar

[5] M.Gratzel, Prog. PhotoVolt. 8, (2000)171.

Google Scholar

[6] M. Gratzel, J. Photochem. Photobiol. C,. Photochem. Rev., 4, (2003)145–153.

Google Scholar

[7] M. K.Nazeeruddin, E. Baranoff, M.Gratzel, Sol. Energy, 85, ( 2011)1172-1178,.

Google Scholar

[8] Min-Woo Park, Ki-Young Chun, Joo-Sin Lee, Dong-Joo Kwak, Youl-Moon Sung, and Yong-Taek Hyun, Electronic Materials Letters, 5, 3, (2009)109-112.

Google Scholar

[9] PilHo Huh, Seong-Cheol Kim, Electronic Materials Letters, 8, 2, (2012)131-134.

Google Scholar

[10] S. H.Lim, J.Luo, Z.Zhong, W.Ji, J. Lin, Inorg. Chem.44, (2005) 4124.

Google Scholar

[11] M. Karimipour, M. J. Mageto, R. Etefagh, E. Azhir, M. Mwamburi and Z.Topalian, Eur. Phys. J. Appl. Phys. 61, (2013)10601.

DOI: 10.1051/epjap/2012120243

Google Scholar

[12] P. Bonhote, E. Gogniat, M. Gratzel, P. V. Ashrit, Thin Solid Films 350, (1999) 269.

Google Scholar

[13] P. D. Cozzoli, R. Comparelli, E. Fanizza, M. L. Curri, A. Agostiano, Mater. Sci. Eng., C 23, (2003)707.

Google Scholar

[14] Y. Kikuchi, K.Sunada, T.Iyoda, K.Hashimoto, A.Fujishima, J.Photochem. Photobiol. A 106, (1997) 51.

Google Scholar

[15] N. M. Mahmoodi, M. Arami, N. Y. Limaee, N. S. Tabrizi, Chem.Eng. J. 112, (2005) 191.

Google Scholar

[16] N. P.Huang, M. H. Xu, C. W.Yuan, R. R.Yu, J. Photochem.Photobiol. A 108, (1997)229.

Google Scholar

[17] S. Ivankovic, M.Gotic, M.Jurin, S.Music, J. Sol-Gel Sci. Technol. 27, (2003) 225.

Google Scholar

[18] H. Sakai, R. Baba, K. Hashimoto, Y. Kubota, A. Fujishima, Chem.Lett. (1995)185.

Google Scholar

[19] X. Chen, and S.S. Mao, Chem. Rev. 107, (2007) 2891.

Google Scholar

[20] P. Chen, J. Brillet, H. Bala, P. Wang, S. M. Zakeeruddin and M. Graetzel, J. Mater. Chem., 19, 30, (2009)5325-5328.

Google Scholar

[21] D. D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin and M. Graetzel, ACS Nano, 2, (2008)1113-1116.

DOI: 10.1021/nn800174y

Google Scholar

[22] G. J.Meyer, Inorg. Chem. 44, (2005) 6852.

Google Scholar

[23] M. Rahman, F. Tajabadi, L.Shooshtari and N.Taghavinia, Chem. Phys. Chem, 12, (2011) 966–973

Google Scholar

[24] E. Enache-Pommer, J. E. Boercker, and E.S. Aydil, Appl. Phys. Lett. 91, (2007)123116.

DOI: 10.1063/1.2783477

Google Scholar

[25] M. Samadpour, A. Irajizad, N. Taghavinia, M. Molaei, J. Phys. D: Appl. Phys. 44, (2011) 045103.

DOI: 10.1088/0022-3727/44/4/045103

Google Scholar

[26] E. Ghadiri, N. Taghavinia, S. M Zakeeruddin, M. Grätzel, J.-E Moser, Nano Lett. 10, (2010) 1632-1638

Google Scholar

[27] Yongfang Jia1, Feng Yang1, Fanggong Cai1, Cuihua Cheng, Yong Zhao, Electronic Materials Letters, 9,3 (2013)287-291.

Google Scholar

[28] N. Kopidakis, N. R. Neale, K. Zhu, J.van de Lagemaat, A. Frank, J. Appl. Phys. Lett. 87, (2005)202106/1.

Google Scholar

[29] O. Hsin-Hung, L. Shang-Lien, Separation and Purification Technology 58, (2007) 179.

Google Scholar

[30] Carel Jan van Oss, J.Mol.Recognit. 16, (2003)177.

Google Scholar

[31] T. Kasuga, Thin Solid Films 496(2006) 141.

Google Scholar

[32] P. Scherrer, Gottinger Nachrichten, Estimation of Size and Internal Structure of Colloidal Particles by Means of Röntgen Rays, 2, 98 (1918).

Google Scholar

[33] S. Hyung Kang, K. Jae-Yup, K. Hyun Sik, S. Yung-Eun, Journal of Industrial and Engineering Chemistry, 14, (2008) 52–59.

Google Scholar

[34] D. L. Morgan , L. Hong-Wei, R. L. Frost and E. R. Waclawik, The Journal of Physical Chemistry C, 114 (1), (2010) 101–110.

Google Scholar

[35] F.D. Hardcastle, Journal of the Arkansas Academy of Science, 65, (2011)43-48.

Google Scholar

[36] S. A.Haque, Y. Tachibana, R.L. Willis, J.E. Moser, M. Gra¨tzel, D.R. Klug, J. R. Durrant, J. Phys.Chem. B 104, (2000) 538–547.

Google Scholar