Performance Effect of ZnAl2O4 - SiO2 Thin Film for Wireless Patch Antenna Application

Article Preview

Abstract:

Polycrystalline of (1-x)ZnAl2O4 – xSiO2 compound with compositions of x = 0.00, 0.05, 0.10, 0.15, 0.20 and 0.25 have been prepared using sol-gel method. Structural properties was investigated by atomic force microscopy (AFM) and x-ray diffractometer (XRD). The AFM images analysis showed that the surface roughness of the highest composition had rougher surface compared with other samples. XRD measurement indicated that the crystallite size also increased with average crystallite size around 18 nm with cubic phase had been found. The dielectric permittivity value were measured with frequency range of 1 Hz to 1 MHz. It is showed that the dielectric value decreased as the freqeuncy was applied to the samples. The performance of the patch antenna showed that the antenna resonated at 3.30 GHz and give-13.87 dB with frequency range about 2 – 4 GHz.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-150

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Hill, J. Craig, G.V. Gibbs, Systematics of the spinel structure type, Phys. Chem. Miner., 4 (1979) 317-339.

Google Scholar

[2] X. Duan, D. Yuan, Z. Sun, H. Sun, D. Xu, M. Lv, Synthesis and characterization of ZnAl2O4/SiO2 nanocomposites by sol–gel method, J. Cryst. Growth, 252 (2003) 4-8.

DOI: 10.1016/s0022-0248(03)00835-2

Google Scholar

[3] S.A.E. All, Y.H.A. Fawzy, R.M. Radwan, Study on the structure and electrical behaviour of zinc aluminate ceramics irradiated with gamma radiation, J. Phys. D: Appl. Phys., 40 (2007) 5707.

DOI: 10.1088/0022-3727/40/18/029

Google Scholar

[4] M. Zawadzki, J. Wrzyszcz, Hydrothermal synthesis of nanoporous zinc aluminate with high surface area, Mater. Res. Bull., 35 (2000) 109-114.

DOI: 10.1016/s0025-5408(00)00185-9

Google Scholar

[5] W.S. Tzing, W.H. Tuan, The strength of duplex Al2O3-ZnAl2O4 composite, J. Mater. Sci. Lett., 15 (1996) 1395-1396.

DOI: 10.1007/bf00275286

Google Scholar

[6] A. Ballarini, S. Bocanegra, A. Castro, S. Miguel, O. Scelza, Characterization of ZnAl2O4 Obtained by Different Methods and Used as Catalytic Support of Pt, Catal. Lett., 129 (2009) 293-302.

DOI: 10.1007/s10562-008-9833-6

Google Scholar

[7] H. Grabowska, M. Zawadzki, L. Syper, Catalytic Method for N-Methyl-4-pyridone Synthesis in the Presence of ZnAl2O4, Catal. Lett., 121 (2008) 103-110.

DOI: 10.1007/s10562-007-9305-4

Google Scholar

[8] M.C. Marion, E. Garbowski, M. Primet, Catalytic properties of copper oxide supported on zinc aluminate in methane combustion, J. Chem. Soc., Faraday Trans., 87 (1991) 1795-1800.

DOI: 10.1039/ft9918701795

Google Scholar

[9] N. Guilhaume, M. Primet, Catalytic combustion of methane : copper oxide supported on high-specific-area spinels synthesized by a sol-gel process, J. Chem. Soc., Faraday Trans., 90 (1994) 1541-1545.

DOI: 10.1039/ft9949001541

Google Scholar

[10] M. Zawadzki, W. Miśta, L. Kępiński, Metal-support effects of platinum supported on zinc aluminate, Vacuum, 63 (2001) 291-296.

DOI: 10.1016/s0042-207x(01)00204-4

Google Scholar

[11] Y. Wu, J. Du, K.-L. Choy, L.L. Hench, J. Guo, Formation of interconnected microstructural ZnAl2O4 films prepared by sol–gel method, Thin Solid Films, 472 (2005) 150-156.

DOI: 10.1016/j.tsf.2004.07.084

Google Scholar

[12] S.K. Sampath, J.F. Cordaro, Optical Properties of Zinc Aluminate, Zinc Gallate, and Zinc Aluminogallate Spinels, J. Am. Ceram. Soc., 81 (1998) 649-654.

DOI: 10.1111/j.1151-2916.1998.tb02385.x

Google Scholar

[13] M.A. Valenzuela, J.P. Jacobs, P. Bosch, S. Reijne, B. Zapata, H.H. Brongersma, The influence of the preparation method on the surface structure of ZnAl2O4, Applied Catalysis A: General, 148 (1997) 315-324.

DOI: 10.1016/s0926-860x(96)00235-9

Google Scholar

[14] Z. Chen, E. Shi, Y. Zheng, W. Li, N. Wu, W. Zhong, Synthesis of mono-dispersed ZnAl2O4 powders under hydrothermal conditions, Mater. Lett., 56 (2002) 601-605.

DOI: 10.1016/s0167-577x(02)00561-x

Google Scholar

[15] X. Wei, D. Chen, Synthesis and characterization of nanosized zinc aluminate spinel by sol–gel technique, Mater. Lett., 60 (2006) 823-827.

DOI: 10.1016/j.matlet.2005.10.024

Google Scholar

[16] S. Kurajica, E. Tkalcec, J. Sipusic, G. Matijasic, I. Brnardic, I. Simcic, Synthesis and characterization of nanocrystalline zinc aluminate spinel by sol–gel technique using modified alkoxide precursor, J. Sol-Gel Sci. Technol., 46 (2008) 152-160.

DOI: 10.1007/s10971-008-1707-2

Google Scholar

[17] A. Silva, A. Souza Gonçalves, M. Davolos, Characterization of nanosized ZnAl2O4 spinel synthesized by the sol–gel method, J. Sol-Gel Sci. Technol., 49 (2009) 101-105.

DOI: 10.1007/s10971-008-1833-x

Google Scholar

[18] K.P. Surendran, N. Santha, P. Mohanan, M.T. Sebastian, Temperature stable low loss ceramic dielectrics in (1-x)ZnAl2O4-xTiO2 system for microwave substrate applications, The European Physical Journal B - Condensed Matter and Complex Systems, 41 (2004) 301-306.

DOI: 10.1140/epjb/e2004-00321-8

Google Scholar

[19] T. Tsunooka, M. Androu, Y. Higashida, H. Sugiura, H. Ohsato, Effects of TiO2 on sinterability and dielectric properties of high-Q forsterite ceramics, J. Eur. Ceram. Soc., 23 (2003) 2573-2578.

DOI: 10.1016/s0955-2219(03)00177-8

Google Scholar

[20] J.-j. Bian, D.-W. Kim, K.S. Hong, Microwave dielectric properties of Ca2P2O7, J. Eur. Ceram. Soc., 23 (2003) 2589-2592.

Google Scholar

[21] L. Zhang, in, Ohio State University, 2004.

Google Scholar

[22] J. Okal, M. Zawadzki, Catalytic combustion of methane over ruthenium supported on zinc aluminate spinel, Applied Catalysis A: General, 453 (2013) 349-357.

DOI: 10.1016/j.apcata.2012.12.040

Google Scholar

[23] R. Jenkins, R. Snyder, Introduction to X-ray powder diffractometry, Wiley-Interscience, 2012.

Google Scholar

[24] J. Song, M. Leng, X. Fu, J. Liu, Synthesis and characterization of nanosized zinc aluminate spinel from a novel Zn–Al layered double hydroxide precursor, J. Alloys Compd., 543 (2012) 142-146.

DOI: 10.1016/j.jallcom.2012.07.111

Google Scholar

[25] B. Shokri, M.A. Firouzjah, S. Hosseini, FTIR analysis of silicon dioxide thin film deposited by Metal organic-based PECVD.

Google Scholar

[26] S. Farhadi, S. Panahandehjoo, Spinel-type zinc aluminate (ZnAl2O4) nanoparticles prepared by the co-precipitation method: A novel, green and recyclable heterogeneous catalyst for the acetylation of amines, alcohols and phenols under solvent-free conditions, Applied Catalysis A: General, 382 (2010) 293-302.

DOI: 10.1016/j.apcata.2010.05.005

Google Scholar

[27] E. Jamal, D. Kumar, M.R. Anantharaman, On structural, optical and dielectric properties of zinc aluminate nanoparticles, Bull. Mater. Sci., 34 (2011) 251-259.

DOI: 10.1007/s12034-011-0071-y

Google Scholar

[28] C.A. Balanis, Antenna theory: analysis and design/Constantine A. Balanis, J. Wiley, New York, 1982.

Google Scholar

[29] I.S. Nefedov, A.C. Tarot, K. Mahdjoubi, in: Antenna Technology: Small and Smart Antennas Metamaterials and Applications, 2007. IWAT '07. International Workshop on, 2007, pp.101-104.

DOI: 10.1109/iwat.2007.370089

Google Scholar