[1]
R. Hill, J. Craig, G.V. Gibbs, Systematics of the spinel structure type, Phys. Chem. Miner., 4 (1979) 317-339.
Google Scholar
[2]
X. Duan, D. Yuan, Z. Sun, H. Sun, D. Xu, M. Lv, Synthesis and characterization of ZnAl2O4/SiO2 nanocomposites by sol–gel method, J. Cryst. Growth, 252 (2003) 4-8.
DOI: 10.1016/s0022-0248(03)00835-2
Google Scholar
[3]
S.A.E. All, Y.H.A. Fawzy, R.M. Radwan, Study on the structure and electrical behaviour of zinc aluminate ceramics irradiated with gamma radiation, J. Phys. D: Appl. Phys., 40 (2007) 5707.
DOI: 10.1088/0022-3727/40/18/029
Google Scholar
[4]
M. Zawadzki, J. Wrzyszcz, Hydrothermal synthesis of nanoporous zinc aluminate with high surface area, Mater. Res. Bull., 35 (2000) 109-114.
DOI: 10.1016/s0025-5408(00)00185-9
Google Scholar
[5]
W.S. Tzing, W.H. Tuan, The strength of duplex Al2O3-ZnAl2O4 composite, J. Mater. Sci. Lett., 15 (1996) 1395-1396.
DOI: 10.1007/bf00275286
Google Scholar
[6]
A. Ballarini, S. Bocanegra, A. Castro, S. Miguel, O. Scelza, Characterization of ZnAl2O4 Obtained by Different Methods and Used as Catalytic Support of Pt, Catal. Lett., 129 (2009) 293-302.
DOI: 10.1007/s10562-008-9833-6
Google Scholar
[7]
H. Grabowska, M. Zawadzki, L. Syper, Catalytic Method for N-Methyl-4-pyridone Synthesis in the Presence of ZnAl2O4, Catal. Lett., 121 (2008) 103-110.
DOI: 10.1007/s10562-007-9305-4
Google Scholar
[8]
M.C. Marion, E. Garbowski, M. Primet, Catalytic properties of copper oxide supported on zinc aluminate in methane combustion, J. Chem. Soc., Faraday Trans., 87 (1991) 1795-1800.
DOI: 10.1039/ft9918701795
Google Scholar
[9]
N. Guilhaume, M. Primet, Catalytic combustion of methane : copper oxide supported on high-specific-area spinels synthesized by a sol-gel process, J. Chem. Soc., Faraday Trans., 90 (1994) 1541-1545.
DOI: 10.1039/ft9949001541
Google Scholar
[10]
M. Zawadzki, W. Miśta, L. Kępiński, Metal-support effects of platinum supported on zinc aluminate, Vacuum, 63 (2001) 291-296.
DOI: 10.1016/s0042-207x(01)00204-4
Google Scholar
[11]
Y. Wu, J. Du, K.-L. Choy, L.L. Hench, J. Guo, Formation of interconnected microstructural ZnAl2O4 films prepared by sol–gel method, Thin Solid Films, 472 (2005) 150-156.
DOI: 10.1016/j.tsf.2004.07.084
Google Scholar
[12]
S.K. Sampath, J.F. Cordaro, Optical Properties of Zinc Aluminate, Zinc Gallate, and Zinc Aluminogallate Spinels, J. Am. Ceram. Soc., 81 (1998) 649-654.
DOI: 10.1111/j.1151-2916.1998.tb02385.x
Google Scholar
[13]
M.A. Valenzuela, J.P. Jacobs, P. Bosch, S. Reijne, B. Zapata, H.H. Brongersma, The influence of the preparation method on the surface structure of ZnAl2O4, Applied Catalysis A: General, 148 (1997) 315-324.
DOI: 10.1016/s0926-860x(96)00235-9
Google Scholar
[14]
Z. Chen, E. Shi, Y. Zheng, W. Li, N. Wu, W. Zhong, Synthesis of mono-dispersed ZnAl2O4 powders under hydrothermal conditions, Mater. Lett., 56 (2002) 601-605.
DOI: 10.1016/s0167-577x(02)00561-x
Google Scholar
[15]
X. Wei, D. Chen, Synthesis and characterization of nanosized zinc aluminate spinel by sol–gel technique, Mater. Lett., 60 (2006) 823-827.
DOI: 10.1016/j.matlet.2005.10.024
Google Scholar
[16]
S. Kurajica, E. Tkalcec, J. Sipusic, G. Matijasic, I. Brnardic, I. Simcic, Synthesis and characterization of nanocrystalline zinc aluminate spinel by sol–gel technique using modified alkoxide precursor, J. Sol-Gel Sci. Technol., 46 (2008) 152-160.
DOI: 10.1007/s10971-008-1707-2
Google Scholar
[17]
A. Silva, A. Souza Gonçalves, M. Davolos, Characterization of nanosized ZnAl2O4 spinel synthesized by the sol–gel method, J. Sol-Gel Sci. Technol., 49 (2009) 101-105.
DOI: 10.1007/s10971-008-1833-x
Google Scholar
[18]
K.P. Surendran, N. Santha, P. Mohanan, M.T. Sebastian, Temperature stable low loss ceramic dielectrics in (1-x)ZnAl2O4-xTiO2 system for microwave substrate applications, The European Physical Journal B - Condensed Matter and Complex Systems, 41 (2004) 301-306.
DOI: 10.1140/epjb/e2004-00321-8
Google Scholar
[19]
T. Tsunooka, M. Androu, Y. Higashida, H. Sugiura, H. Ohsato, Effects of TiO2 on sinterability and dielectric properties of high-Q forsterite ceramics, J. Eur. Ceram. Soc., 23 (2003) 2573-2578.
DOI: 10.1016/s0955-2219(03)00177-8
Google Scholar
[20]
J.-j. Bian, D.-W. Kim, K.S. Hong, Microwave dielectric properties of Ca2P2O7, J. Eur. Ceram. Soc., 23 (2003) 2589-2592.
Google Scholar
[21]
L. Zhang, in, Ohio State University, 2004.
Google Scholar
[22]
J. Okal, M. Zawadzki, Catalytic combustion of methane over ruthenium supported on zinc aluminate spinel, Applied Catalysis A: General, 453 (2013) 349-357.
DOI: 10.1016/j.apcata.2012.12.040
Google Scholar
[23]
R. Jenkins, R. Snyder, Introduction to X-ray powder diffractometry, Wiley-Interscience, 2012.
Google Scholar
[24]
J. Song, M. Leng, X. Fu, J. Liu, Synthesis and characterization of nanosized zinc aluminate spinel from a novel Zn–Al layered double hydroxide precursor, J. Alloys Compd., 543 (2012) 142-146.
DOI: 10.1016/j.jallcom.2012.07.111
Google Scholar
[25]
B. Shokri, M.A. Firouzjah, S. Hosseini, FTIR analysis of silicon dioxide thin film deposited by Metal organic-based PECVD.
Google Scholar
[26]
S. Farhadi, S. Panahandehjoo, Spinel-type zinc aluminate (ZnAl2O4) nanoparticles prepared by the co-precipitation method: A novel, green and recyclable heterogeneous catalyst for the acetylation of amines, alcohols and phenols under solvent-free conditions, Applied Catalysis A: General, 382 (2010) 293-302.
DOI: 10.1016/j.apcata.2010.05.005
Google Scholar
[27]
E. Jamal, D. Kumar, M.R. Anantharaman, On structural, optical and dielectric properties of zinc aluminate nanoparticles, Bull. Mater. Sci., 34 (2011) 251-259.
DOI: 10.1007/s12034-011-0071-y
Google Scholar
[28]
C.A. Balanis, Antenna theory: analysis and design/Constantine A. Balanis, J. Wiley, New York, 1982.
Google Scholar
[29]
I.S. Nefedov, A.C. Tarot, K. Mahdjoubi, in: Antenna Technology: Small and Smart Antennas Metamaterials and Applications, 2007. IWAT '07. International Workshop on, 2007, pp.101-104.
DOI: 10.1109/iwat.2007.370089
Google Scholar