Photonic Bloch Oscillations and Zener Tunneling in Dual-Periodical Multilayers Made of Porous Silicon: Effect of Angle of Incidence

Article Preview

Abstract:

Experimental evidence of photon Bloch Oscillations (PBOs) and Zener tunneling (ZT) in dual-periodical (DP) superlattices made of porous silicon (PSi), is presented. An introduction of linear gradient in physical layer thicknesses in DP structure, composed by stacking two different periodic substructures N times, where (N-1) resonances appear, i.e, WSLs resonances and Zener tunneling of the nearest resonances of two consecutive minibands can be observed depending on the values of applied gradient. Theoretical time-resolved reflection and scattering state maps show photonic Bloch oscillations (BOs) and Zener tunneling for a range of incidence angles. Measured reflection reveals the presence of Wannier-Stark ladders (WSLs) and ZT in the near infrared region.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-90

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Kavokin, and G. Malpuech, Photonic Bloch oscillations in laterally confined Bragg mirrors, Phys. Rev. B. 61 (2000) 4413-4416.

DOI: 10.1103/physrevb.61.4413

Google Scholar

[2] M. Ghulinyan, C. J. Oton, Z. Gaburro, L. Pavesi, C. Toninelli, and D. S. Wiersma. Zener Tunneling of LightWaves in an Optical Superlattice. Phys. Rev. Lett. 94 (2005) 127401.

DOI: 10.1103/physrevlett.94.127401

Google Scholar

[3] E. Yablonovitch, Inhibited spontaneous emission in solid-stated physic and electronics. Phys Rev Lett. 58, (1987) 2059-2062.

DOI: 10.1103/physrevlett.58.2059

Google Scholar

[4] J. D. Joannopoulos, R. D. Meade, J. N. Winn, Phothonic Crystals Molding the ow of light, Princeton University Press, New Jersey, 1995.

Google Scholar

[5] G. Malpuech, A. Kavokin, G. Panzarini, and A. DiCarlo, Theory of photon Bloch oscillations in photonic crystals. Phys. Rev. B. 63 (2001) 035108.

DOI: 10.1103/physrevb.63.035108

Google Scholar

[6] V. Agarwal, J. A. del Río, G Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil: Photon Bloch Oscillations in Porous Silicon Optical Superlattices. Phys. Rev. Lett. 92 (2004) 097401.

DOI: 10.1103/physrevlett.92.097401

Google Scholar

[7] R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi. Optical Analogue of Electronic Bloch Oscillations. Phys. Rev. Lett. 91 (2003) 263902.

DOI: 10.1103/physrevlett.91.263902

Google Scholar

[8] P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma. Optical switching by capillary condensation. Nature Photonics 1 (2007) 172-175.

DOI: 10.1038/nphoton.2007.24

Google Scholar

[9] J. O. Estevez, J. Arriaga, A Mendez-Blas, E. Reyes-Ayona, J. Escorcia, and V. Agarwal. Demonstration of photon Bloch oscillations and Wannier-Stark ladders in dualperiodical multilayer structures based on porous silicon. Nanoscale Research Letters 7 (2012) 413.

DOI: 10.1186/1556-276x-7-413

Google Scholar

[10] M. Ghulinyan, Z. Gaburro, D. s. Wiersma, and L. Pavesi. Tuning of resonant Zener tunneling by vapor diffusion and condensation in porous optical superlattices. Phys. Rev. B. 74 (2006) 045118.

DOI: 10.1103/physrevb.74.045118

Google Scholar

[11] P. Barthelemy, M. Ghulinyan, Z. Gaburro, C. Toninelli, L. Pavesi, and D. S. Wiersma. Optical switching by capillary condensation. Nature Photonics 1 (2007) 172-175.

DOI: 10.1038/nphoton.2007.24

Google Scholar

[12] X. Kang, and Z. Wang. Optical Bloch oscillation and resonant Zener tunneling in one dimensional quasi-period structures containing single negative materials. Optics Communications 282 (2009) 355359.

DOI: 10.1016/j.optcom.2008.10.016

Google Scholar

[13] K. Pérez, J. O. Estevez, A Méndez-Blas, and J. Arriaga. Localized defect modes in dual-periodical multilayer structures based on porous silicon. J. Opt. Soc. Am. B. 29 (2012) 538-542.

DOI: 10.1364/josab.29.000538

Google Scholar

[14] Karina S. Pérez, J. Octavio Estevez, Antonio Mndez-Blas, J. Arriaga, Gabriela Palestino and Miguel E. Mora-Ramos. Tunable resonance transmission modes in hybrid heterostructures based on porous silicon. Nanoscale Research Letters 7 (2012) 392.

DOI: 10.1186/1556-276x-7-392

Google Scholar

[15] P. M. Fauchet, L. Tsybeskov, and K. D. Hirschmann, Stabilizing process for porous silicon and resulting light emitting device, US Patent No. 6,017,773 (2000).

Google Scholar

[16] P. Yeh. Optical Waves in Layered Media. Wiley VCH. New Jersey. 1998.

Google Scholar