[1]
F. Tam, G.P. Goodrich, B.R. Johnson, N.J. Halas, Plasmonic enhancement of molecular fluorescence, Nano Lett. 7 (2007) 496-501.
DOI: 10.1021/nl062901x
Google Scholar
[2]
Y.F. Huang, K.H. Ma, K.B. Kang, M. Zhao, Z.L. Zhang, Y.X. Liu, T. Wen, Q. Wang, W.Y. Qiu, D. Qiu, Core-shell plasmonic nanostructures to fine-tune long "Au nanoparticle-fluorophore'' distance and radiative dynamics, Colloid. Surface A: Physicochem. Eng. Aspects 421 (2013) 101-108.
DOI: 10.1016/j.colsurfa.2012.12.050
Google Scholar
[3]
Y.C. Chen, K. Munechika, D.S. Ginger, Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles, Nano Lett. 7 (2007) 690-696.
DOI: 10.1021/nl062795z
Google Scholar
[4]
K. Aslan, M. Wu, J.R. Lakowicz, C.D. Geddes, Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms, J. Am. Chem. Soc. 129 (2007) 1524-1525.
DOI: 10.1021/ja0680820
Google Scholar
[5]
K. Aslan, I. Gryczynski, J. Malicka, Metal-enhanced fluorescence: an emerging tool in biotechnology, Curr. Opin. Biotech. 16 (2005) 55-62.
DOI: 10.1016/j.copbio.2005.01.001
Google Scholar
[6]
J. Zhang, Y. Fu, M.H. Chowdhury, J.R. Lakowicz, Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles, Nano Lett. 7 (2007) 2101-2107.
DOI: 10.1021/nl071084d
Google Scholar
[7]
S.M. El-Bashir, F.M. Barakat, M.S. AlSalhi, Metal-enhanced fluorescence of mixed coumarin dyes by silver and gold nanoparticles: Towards plasmonic thin-film luminescent solar concentrator, J. Lumin. 143 (2013) 43-49.
DOI: 10.1016/j.jlumin.2013.04.029
Google Scholar
[8]
J.R. Lakowicz, Y.B. Shen, S.D'Auria, J. Malicka, J.Y. Fang, Z. Gryczynski, I. Gryczynski, Radiative decay engineering: 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer, Anal. Biochem. 301 (2002) 261-277.
DOI: 10.1006/abio.2001.5503
Google Scholar
[9]
J.R. Lakowicz, Radiative decay engineering 3. Surface plasmon-coupled directional emission, Anal. Biochem. 324 (2004) 153-169.
DOI: 10.1016/j.ab.2003.09.039
Google Scholar
[10]
I. Gryczynski, J. Malicka, Z. Gryczynski, J.R. Lakowicz, Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission, Anal. Biochem. 324 (2004) 170-182.
DOI: 10.1016/j.ab.2003.09.036
Google Scholar
[11]
J.R. Lakowicz, Radiative decay engineering: Biophysical and biomedical applications, Anal. Biochem. 298 (2001) 1-24.
Google Scholar
[12]
E. Arifin, J.K. Lee, The distance-dependent fluorescence enhancement phenomena in uniform size Ag@SiO2@SiO2 (dye) nanocomposites, Bull. Korean Chem. Soc. 34 (2013) 539-544.
DOI: 10.5012/bkcs.2013.34.2.539
Google Scholar
[13]
P. Liu, L.L. Zhao, X. Wu, F. Huang, M.Q. Wang, X.D. Liu, Fluorescence enhancement of quercetin complexes by silver nanoparticles and its analytical application, Spectrochim. Acta A 122 (2014) 238-245.
DOI: 10.1016/j.saa.2013.11.055
Google Scholar
[14]
J. Yan, Y.H. Lu, P. Wang, H. Ming, Integral fluorescence enhancement by silver nanoparticles controlled via PMMA matrix, Opt. Commun. 284 ( 2011) 494-497.
DOI: 10.1016/j.optcom.2010.09.007
Google Scholar
[15]
E.G. Matveeva, T. Shtoyko, I. Gryczynski, I. Akopova, Z. Gryczynski, Fluorescence quenching/enhancement surface assays: Signal manipulation using silver-coated gold nanoparticles, Chem. Phys. Lett. 454 (2008) 85-90.
DOI: 10.1016/j.cplett.2008.01.075
Google Scholar
[16]
N.Q. Yin, Y.S. Liu, L. Liu, J.M. Lei, T.T. Jiang, H.J. Wang, L.X. Zhu, X.L. Xu, Fluorescence enhancement of Ru(bpy)32+ by core-shell Ag@SiO2 nanocomposites, J. Alloy. Compd. 581 (2013) 6-10.
DOI: 10.1016/j.jallcom.2013.06.151
Google Scholar
[17]
J. Dong, J.M. Gong, J.H. Liu, M. Chen, X.W. Yan, The decoration of silver fractal-like nanostructure with Ag nanoparticles on the plastic slide for surface enhanced fluorescence, Electrochim. Acta. 60 (2012) 264-268.
DOI: 10.1016/j.electacta.2011.11.050
Google Scholar
[18]
H. Mishra, Y.X. Zhang, C.D. Geddes, Metal enhanced fluorescence of the fluorescent brightening agent Tinopal-CBX near silver island film, Dyes Pigments 91 (2011) 225-230
DOI: 10.1016/j.dyepig.2011.03.005
Google Scholar
[19]
R. Yasukuni, G. Laurent, K. Okazaki, M. Oki, T. Torimoto, T. Asahi, Modification of excimer emission of perylene dye thin films by single silver nanocubes, J. Photoch. Photobio A 221 (2011) 194-198.
DOI: 10.1016/j.jphotochem.2011.03.013
Google Scholar
[20]
R. Pribik, A.I. Dragan, Y. Zhang, C. Gaydos, C.D. Geddes, Metal-Enhanced Fluorescence (MEF): Physical characterization of Silver-island films and exploring sample geometries, Chem. Phys. Lett. 478 (2009) 70-74.
DOI: 10.1016/j.cplett.2009.07.033
Google Scholar
[21]
X. He, X.J. Zhao, J.Y. Feng, X.T. Sui, Effects of silver nanostructures on fluorescence modulation of rhodamine B and fluorescein, Adv. Mater. Res. 47-50 (2008) 920-923.
DOI: 10.4028/www.scientific.net/amr.47-50.920
Google Scholar
[22]
P. Jiang, S.Y. Li, S.S. Xie, Y. Gao, L. Song, Machinable long PVP-stabilized silver nanowires, Chem. Eur. J. 10 (2004): 4817-4821.
DOI: 10.1002/chem.200400318
Google Scholar