Study on the Metal-Enhanced Fluorescence of Dyes by Ag-Polyvinylpyrrolidone Nanocomposites

Article Preview

Abstract:

In this work, the effects of Ag nanoparticles or Ag-PVP nanocomposites on the fluorescence properties of rhodamine B and fluorescein were investigated. The fluorescence intensities of the dyes could be largely enhanced by Ag nanoparticles with various concentrations. Moreover, the intensities were further increased by Ag-PVP nanocomposites. The results show that the maximum enhancement ratio of 36.5 fold is achieved for rhodamine B in the presence of 2% Ag-PVP nanocomposites, as well as 4.37 fold for fluorescein with 5% Ag-PVP nanocomposites. The enhancement is believed to mainly be originated from the increased excitation rate of the dyes due to the local electromagnetic field which is improved by the interaction of light with Ag nanoparticles. The further fluorescence enhancement of the dyes by Ag-PVP nanocomposites is attributed to the effective separation of Ag nanoparticles from the dyes by PVP molecules. Additionally, the difference in the enhancement ratio of two dyes was also discussed. The lower quantum yield of the dye, as well as higher overlapped degree between Ag nanoparticles and the absorption of dye result in the larger enhancement ratio. The research could be meaningful for improving the sensitivity of rapidly medical or biological assays.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-10

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Tam, G.P. Goodrich, B.R. Johnson, N.J. Halas, Plasmonic enhancement of molecular fluorescence, Nano Lett. 7 (2007) 496-501.

DOI: 10.1021/nl062901x

Google Scholar

[2] Y.F. Huang, K.H. Ma, K.B. Kang, M. Zhao, Z.L. Zhang, Y.X. Liu, T. Wen, Q. Wang, W.Y. Qiu, D. Qiu, Core-shell plasmonic nanostructures to fine-tune long "Au nanoparticle-fluorophore'' distance and radiative dynamics, Colloid. Surface A: Physicochem. Eng. Aspects 421 (2013) 101-108.

DOI: 10.1016/j.colsurfa.2012.12.050

Google Scholar

[3] Y.C. Chen, K. Munechika, D.S. Ginger, Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles, Nano Lett. 7 (2007) 690-696.

DOI: 10.1021/nl062795z

Google Scholar

[4] K. Aslan, M. Wu, J.R. Lakowicz, C.D. Geddes, Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms, J. Am. Chem. Soc. 129 (2007) 1524-1525.

DOI: 10.1021/ja0680820

Google Scholar

[5] K. Aslan, I. Gryczynski, J. Malicka, Metal-enhanced fluorescence: an emerging tool in biotechnology, Curr. Opin. Biotech. 16 (2005) 55-62.

DOI: 10.1016/j.copbio.2005.01.001

Google Scholar

[6] J. Zhang, Y. Fu, M.H. Chowdhury, J.R. Lakowicz, Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer:  coupling effect between metal particles, Nano Lett. 7 (2007) 2101-2107.

DOI: 10.1021/nl071084d

Google Scholar

[7] S.M. El-Bashir, F.M. Barakat, M.S. AlSalhi, Metal-enhanced fluorescence of mixed coumarin dyes by silver and gold nanoparticles: Towards plasmonic thin-film luminescent solar concentrator, J. Lumin. 143 (2013) 43-49.

DOI: 10.1016/j.jlumin.2013.04.029

Google Scholar

[8] J.R. Lakowicz, Y.B. Shen, S.D'Auria, J. Malicka, J.Y. Fang, Z. Gryczynski, I. Gryczynski, Radiative decay engineering: 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer, Anal. Biochem. 301 (2002) 261-277.

DOI: 10.1006/abio.2001.5503

Google Scholar

[9] J.R. Lakowicz, Radiative decay engineering 3. Surface plasmon-coupled directional emission, Anal. Biochem. 324 (2004) 153-169.

DOI: 10.1016/j.ab.2003.09.039

Google Scholar

[10] I. Gryczynski, J. Malicka, Z. Gryczynski, J.R. Lakowicz, Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission, Anal. Biochem. 324 (2004) 170-182.

DOI: 10.1016/j.ab.2003.09.036

Google Scholar

[11] J.R. Lakowicz, Radiative decay engineering: Biophysical and biomedical applications, Anal. Biochem. 298 (2001) 1-24.

Google Scholar

[12] E. Arifin, J.K. Lee, The distance-dependent fluorescence enhancement phenomena in uniform size Ag@SiO2@SiO2 (dye) nanocomposites, Bull. Korean Chem. Soc. 34 (2013) 539-544.

DOI: 10.5012/bkcs.2013.34.2.539

Google Scholar

[13] P. Liu, L.L. Zhao, X. Wu, F. Huang, M.Q. Wang, X.D. Liu, Fluorescence enhancement of quercetin complexes by silver nanoparticles and its analytical application, Spectrochim. Acta A 122 (2014) 238-245.

DOI: 10.1016/j.saa.2013.11.055

Google Scholar

[14] J. Yan, Y.H. Lu, P. Wang, H. Ming, Integral fluorescence enhancement by silver nanoparticles controlled via PMMA matrix, Opt. Commun. 284 ( 2011) 494-497.

DOI: 10.1016/j.optcom.2010.09.007

Google Scholar

[15] E.G. Matveeva, T. Shtoyko, I. Gryczynski, I. Akopova, Z. Gryczynski, Fluorescence quenching/enhancement surface assays: Signal manipulation using silver-coated gold nanoparticles, Chem. Phys. Lett. 454 (2008) 85-90.

DOI: 10.1016/j.cplett.2008.01.075

Google Scholar

[16] N.Q. Yin, Y.S. Liu, L. Liu, J.M. Lei, T.T. Jiang, H.J. Wang, L.X. Zhu, X.L. Xu, Fluorescence enhancement of Ru(bpy)32+ by core-shell Ag@SiO2 nanocomposites, J. Alloy. Compd. 581 (2013) 6-10.

DOI: 10.1016/j.jallcom.2013.06.151

Google Scholar

[17] J. Dong, J.M. Gong, J.H. Liu, M. Chen, X.W. Yan, The decoration of silver fractal-like nanostructure with Ag nanoparticles on the plastic slide for surface enhanced fluorescence, Electrochim. Acta. 60 (2012) 264-268.

DOI: 10.1016/j.electacta.2011.11.050

Google Scholar

[18] H. Mishra, Y.X. Zhang, C.D. Geddes, Metal enhanced fluorescence of the fluorescent brightening agent Tinopal-CBX near silver island film, Dyes Pigments 91 (2011) 225-230

DOI: 10.1016/j.dyepig.2011.03.005

Google Scholar

[19] R. Yasukuni, G. Laurent, K. Okazaki, M. Oki, T. Torimoto, T. Asahi, Modification of excimer emission of perylene dye thin films by single silver nanocubes, J. Photoch. Photobio A 221 (2011) 194-198.

DOI: 10.1016/j.jphotochem.2011.03.013

Google Scholar

[20] R. Pribik, A.I. Dragan, Y. Zhang, C. Gaydos, C.D. Geddes, Metal-Enhanced Fluorescence (MEF): Physical characterization of Silver-island films and exploring sample geometries, Chem. Phys. Lett. 478 (2009) 70-74.

DOI: 10.1016/j.cplett.2009.07.033

Google Scholar

[21] X. He, X.J. Zhao, J.Y. Feng, X.T. Sui, Effects of silver nanostructures on fluorescence modulation of rhodamine B and fluorescein, Adv. Mater. Res. 47-50 (2008) 920-923.

DOI: 10.4028/www.scientific.net/amr.47-50.920

Google Scholar

[22] P. Jiang, S.Y. Li, S.S. Xie, Y. Gao, L. Song, Machinable long PVP-stabilized silver nanowires, Chem. Eur. J. 10 (2004): 4817-4821.

DOI: 10.1002/chem.200400318

Google Scholar