Morphology-Controlled Synthesis of Single Crystalline α-Mn2O3 Sea-Urchins Assembled with Pen-Type Nanoneedles and Broad Absorption Spectrum

Article Preview

Abstract:

Single crystalline high quality α-Mn2O3 nanorods and sea-urchins assembled with pen-type nanoneedles have been successfully synthesized by template-free hydrothermal route. The variation in hydrothermal temperature has affected the morphology of the α-Mn2O3 sea-urchin assembled with the nanoneedles noticeably. The influence of temperature change on the thickness, crystallinity, surface morphology and optical properties of α-Mn2O3 has been characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX) analysis, Transmission Electron Microscopy (TEM), High Resolution Transmission Electron Microscopy (HRTEM), Raman Spectroscopy (RS) and UV-visible Spectroscopy. The results showed that in our experimental conditions, single crystalline nanorods of the α-Mn2O3 were obtained at a low temperature of 180 °C, while single crystalline sea-urchin assembled with pen-type nanoneedles were obtained by increasing the temperature to 280 °C. Nanorods and sea-urchin assembled with pen-type nanoneedles obtained had the well defined morphology and crystalline quality. The sea-urchin synthesized at 280 °C exhibited more than 90% absorption in UV-visible spectrum.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

38-48

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Zhang, J. Sui, L. Zhang, M. Wan, Y. Wei and L. Yu, Adv. Mater. 17 (2005) 2854–2857.

Google Scholar

[2] S. M. Lee, Y. W. Jun, S. N. Cho and J. Cheon, J. Am. Chem. 124 (2002) 11244–11245.

Google Scholar

[3] M. Baldi, V. S. Escribano, J. M. G. Amores, F. Milella and G. Busca, Appl. Catal. B Environ. 17 (1998) 175–182.

Google Scholar

[4] H. M. Zhang, Y. Teraoka and N. Yamazoe, Catal. Today, 6 (1989) 155–162.

Google Scholar

[5] Y. F. Chang and J. G. Mccarty, Catal. Today, 30 (996) 163–170.

Google Scholar

[6] Chugai Electric Industrial Co. Ltd, Japan. Kokai Tokkyo Koho JP 02, 35, 915 [90, 35, 915] February 6, (1990).

Google Scholar

[7] M. Tabuchi and K. Ado, J. Electrochem. Soc. 145, (1998) 49–52.

Google Scholar

[8] T. Nakamura and A. Kajiyama, Solid State Ionics, 124 (1999) 45–52.

Google Scholar

[9] A. Zunger and S. Wagner, J. Electron. Mater, 22, (1993) 3–16.

Google Scholar

[10] Y. F. Han, L. Chen, K. Ramesh, Z. Zhong, F. Chen, J. Chin, et al. Catal Today, 131 (2008) 35–41.

Google Scholar

[11] T. Yamashita, A. Vannice, Appl Catal B Environ, 13 (1997) 141–55.

Google Scholar

[12] Y. M. Liu, G. Bartal, X. Zhang, Opt Express, 16 (2008) 15439–48.

Google Scholar

[13] Y. F. Han, F. Chen, Z. Y. Zhong, K. Ramesh, E. Widjaja and L. W. Chen, Catal Commun, 7 (2006) 739–44.

Google Scholar

[14] S. Lei, K. Tang, Z. Fang, Q. Liu and H. Zheng, Mater Lett, 60 (2006) 53–56.

Google Scholar

[15] Z. Y. Yuan, Z. L. Zhang, G. H. Du, T. Z. Ren and B. L. Su, Chem Phys Lett, 378 (2003) 349–353.

Google Scholar

[16] S. Mukherjee, A. K. Pal, S. Bhattacharya and Raittila, J. Phys Rev B Condens Matter, 74 (2006) 104413- 1-10.

Google Scholar

[17] Y. Chen, Y. Zhang, Q. Z. Yao, G. T. Zhou, S. Fu and H. Fan, J Solid State Chem, 180 (2007) 1218–1223.

Google Scholar

[18] P. Billik, M. Caplovicova, J. Janata, V. S. Fajnor, Mater Lett. 62 (2008) 1052–1056.

Google Scholar

[19] B. Z. Tian, X. Y. Liu, H. F. Yang, S. H. Xie, C. Z. Yu and B. Tu, Adv Mater, 15 (2003) 1370–1374.

Google Scholar

[20] X. Y. Chen, X. X. Li, Y. Jiang, C. W. Shi and X. L. Li, Solid State Commun, 136 (2005) 94–96.

Google Scholar

[21] Z. Fang, K. B. Tang, L. S. Gao, D. Wang, S. Y. Zeng and Q. C. Liu, Mater Res Bull, 42 (2007) 1761–1778.

Google Scholar

[22] G. Busca, Chem Phys, 1 (1991) 723-736.

Google Scholar

[23] R. Kanaparthi, C. Luwei, C. Fengxi, L. Yan, W. Zhan and H. Yi-Fan, catalysts Today, 131 (2008) 477-482.

Google Scholar

[24] X. He, J. Wu, L. Zhao, J. Meng, X. Gao and X. Li, Solid State Commun, 147 (2008) 90–93.

Google Scholar

[25] S. N. Sahu and K. K. Nanda, PINSA, 67 (2001) 103-130.

Google Scholar

[26] Z. W. Chen, J. K. L. Lai, C. H. Shek, Journal of Non-Crystalline Solids, 352 (2006) 3285–3289.

Google Scholar

[27] W. Khan, C. Cao, D. Yu Ping, G. Nabi, S. Hussain, F. Butt, T. Cao, Materials Letters, 65 (2011) 1264–1267.

DOI: 10.1016/j.matlet.2011.01.040

Google Scholar

[28] Carlos R. et al, Advanced Nanomaterials for Aerospace Application, (2014), CRC Press.

Google Scholar