Controlled Synthesis of PbWO4 Crystals with Good Fluorescence Property by a Novel Duck Egg Membrane

Article Preview

Abstract:

PbWO4 crystals with different morphologies were readily induced by duck egg membrane via biomimetic synthesis at room temperature. The size and morphologies of the PbWO4 crystals could be controlled by outer or inner surface of duck egg membrane, the reactant concentration and the reaction time. The results show that spherical, flower-like and spindle-like crystals were obtained on the inner surface of membrane while rhombic, hexagon-like and chrysanthemum-like crystals were gained on the outer surface with the concentration of Pb2+ and WO42- increases. Room-temperature fluorescence spectra indicate the products on the inner surface of the duck egg membrane have a slight blue shift compared to that on the outer surface at the same condition. The PbWO4 crystals with small size obtained at a lower reactant concentration present a better fluorescence performance. The exploration of the reaction mechanism reveals that the interaction between Pb2+ ions and the proteins on the surface of duck egg membrane can make the conformation of the proteins more ordered. In general, the present synthesis route may be extended to prepare other inorganic functional micro-materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-59

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Cheng, H.Y. Shu, Y.L. Wang, C.H. Li, P. Chen, Y.H. Shen, J.M. Song, A.J. Xie, Bioinspired Synthesis of Novel Teeth-Like Hierarchical Architecture Polyaniline/Lead Tungstate Nanocomposites with Photoluminescence Property, J. Polymer Composites 35 (2014).

DOI: 10.1002/pc.22690

Google Scholar

[2] B.N. Grgur, A. Zeradjanin, M.M. Gvozdenovic´, M.D. Maksimovic´, T.L. Tri sovic´, B.Z. Jugovic´, Electrochemical characteristics of rechargeable polyaniline/lead dioxide cellJ, J. Power Sources 217 (2012) 193-198.

DOI: 10.1016/j.jpowsour.2012.06.025

Google Scholar

[3] M. Zhong, Y. Song, Y. Li, C. Ma, X. Zhai, J. Shi, Q. Guo, L. Liu, Effect of reduced graphene oxide on the properties of an activated carbon cloth/polyaniline flexible electrode for supercapacitor application, Power Sources 217 (2012) 6-12.

DOI: 10.1016/j.jpowsour.2012.05.086

Google Scholar

[4] M.V. Korzhik, V.B. Pavlenko, T.N. Timoschenko, et al., Spectroscopy and origin of radiation centers and scintillation in PbWO4 single crystals, physica. Status. solidi(a), 154(2) (1996) 779-788.

DOI: 10.1002/pssa.2211540231

Google Scholar

[5] K. Nitsch, M. Nikl, S. Ganschow, P. Reiche and R. Uecker, Growth of lead tungstate single crystal scintillators, J. Cryst. Growth. 165 (1996) 163-165.

DOI: 10.1016/0022-0248(96)00167-4

Google Scholar

[6] K. Tanji, M. Ishii, Y. Usuki, M. Kobayashi, K. Hara and H. Takano, Crystal growth of PbWO4 by the vertical Bridgman method: effect of crucible thickness and melt composition, J. Cryst. Growth, 204 (1999) 505-511.

DOI: 10.1016/s0022-0248(99)00231-6

Google Scholar

[7] Y. Zhu, D. Hu, M. Wan, L. Jiang, Y. Wei, Conducting and Superhydrophobic Rambutan-like Hollow Spheres of Polyaniline, J. Adv. Mater. 19 (2007) 2092-(2096).

DOI: 10.1002/adma.200602135

Google Scholar

[8] D. Chen, G. Shen, K. Tang and Z. Liang, AOT-microemulsions-based formation and evolution of PbWO4 crystals, J. Phys. Chem. B. 108 (2004) 11280-11284.

DOI: 10.1021/jp0377681

Google Scholar

[9] J. Yu, X. Zhao, S. Liu, M. Li, S. Mann and D. Ng, Poly(methacrylic acid)-mediated morphosynthesis of PbWO4 micro-crystals, J. Appl. Phys. A. 87 (2007) 113-120.

DOI: 10.1007/s00339-006-3850-3

Google Scholar

[10] J. Geng, J. Zhu, D. Lu and H. Chen, Hollow PbWO4 Nanospindles via a Facile Sonochemical Route, J. Inorg. Chem. 45 (2006) 8403-8407.

DOI: 10.1021/ic0608804

Google Scholar

[11] G. Zhao, M. Lu, F. Gu, D. Yu and D. Yuan, Morphology-controlled synthesis, characterization and growth mechanism of PbWO4 nano and macrocrystals, J. Cryst. Growth. 276 (2005) 577-582.

DOI: 10.1016/j.jcrysgro.2004.11.428

Google Scholar

[12] B. Liu, S. Yu, L. Li and Q. Zhang, Morphology Control of Stolzite Microcrystals with High Hierarchy in Solution*, J. Angew. Chem. Int. Edn. 43 (2004) 4745-4750.

DOI: 10.1002/anie.200460090

Google Scholar

[13] Q. Zhang, W. Yao, X. Chen, L. Zhu, Y. Fu, G. Zhang, L. Sheng and S. Yu, Nearly Monodisperse Tungstate MWO4 Microspheres (M = Pb, Ca):  Surfactant-Assisted Solution Synthesis and Optical Properties, J. Cryst. Growth Des. 7 (2007) 1423-1431.

DOI: 10.1021/cg060827q.s001

Google Scholar

[14] S. Liu, J. Yu, X. Zhao and B. Cheng, Effects of polyvinylpyrrolidone and cetyltrimethylammonium bromide on morphology of lead tungstate particles, Alloys Compounds. 433 (2007) 73-78.

DOI: 10.1016/j.jallcom.2006.06.055

Google Scholar

[15] L. Huo and Y. Chu, Controlled synthesis of PbWO4 crystals via microemulsion-based solvothermal method, Mater. Lett. 60 (2006) 2675-2681.

DOI: 10.1016/j.matlet.2006.01.064

Google Scholar

[16] X. He and M. Cao, Synthesis and characterization of PbCrO4 and PbWO4 nanorods, Nanotechnology. 17 (2006) 3139-3143.

Google Scholar

[17] J. Geng, Y.N. Lv, D.J. Lu and J.J. Zhu, Sonochemical synthesis of PbWO4 crystals with dendritic, flowery and star-like structures, Nanotechnology. 17 (2006) 2614–2620.

DOI: 10.1088/0957-4484/17/10/028

Google Scholar

[18] J. Geng, Y. Lu, D. Lu and J. Zhu, Sonochemical synthesis of PbWO4 crystals with dendritic, flowery and star-like structures, Nanotechnology. 17 (2006) 2614-2620.

DOI: 10.1088/0957-4484/17/10/028

Google Scholar

[19] J. Kloprogge, M. Weier, L. Duong andR. Frost, Microwave-assisted synthesis and characterisation of divalent metal tungstate nano-crystalline minerals: ferberite, hubnerite, sanmartinite, scheelite and stolziteMater, J. Chem. Phys. 88 (2004).

DOI: 10.1016/j.matchemphys.2004.08.013

Google Scholar

[20] X. Hu and Y.J. Zhu, Morphology Control of PbWO4 Nano- and Microcrystals via a Simple, Seedless, and High-Yield Wet Chemical Route, Langmuir. 20 (2004)1521-1523.

DOI: 10.1021/la035578b

Google Scholar

[21] D. Anderson, S. Virginia and T. Ciminelli, Electroceramic Materials of Tailored Phase and Morphology by Hydrothermal Technology, J. Chem. Mater. 15 (2003)1344-1352.

DOI: 10.1021/cm0210187

Google Scholar

[22] D. Chen, K. Tang, F. Li, et al., A simple aqueous mineralization process to synthesize tetragonal molybdate microcrystallites, J. Cryst. growth des. 6(1) (2006) 247-252.

DOI: 10.1021/cg0503189

Google Scholar

[23] L. Qi, H. C¨ olfen and M. Antonietti, Control of Barite Morphology by Double-Hydrophilic Block Copolymers, J. Chem. Mater. 12 (2000) 2392-2403.

DOI: 10.1021/cm0010405

Google Scholar

[24] S. Yu, M. Antonietti, H. C¨ olfen and Hartmann, Growth and Self-Assembly of BaCrO4 and BaSO4 Nanofibers toward Hierarchical and Repetitive Superstructures by Polymer-Controlled Mineralization Reactions, J. Nano Lett. 3 (2003) 379-382.

DOI: 10.1021/nl025722y

Google Scholar

[25] A.E. Andreeva, I.R. Karamancheva, Insight into the secondary structure of chloramphenicol acetyltransferase type I-computer analysis and FT-IR spectroscopic characterization of the protein structure, J. Mol. Struct. 565 (2001) 177-182.

DOI: 10.1016/s0022-2860(00)00893-0

Google Scholar

[26] G. Zhou, M. Lu, Z. Xiu, et al., Controlled synthesis of high-quality PbS star-shaped dendrites, multi-pods, truncated nano-cubes, and nano-cubes and their shape evolution process, J. Phys. Chem. B. 110 (2006) 6543-6548.

DOI: 10.1021/jp0549881

Google Scholar

[27] J.G. Yu, H. Tang, B. Cheng, et al., Morphological control of calcium oxalate particles in the presence of poly-(styrene-alt-maleic acid), J. Solid State Chem. 177 (2004) 3368-3374.

DOI: 10.1016/j.jssc.2004.06.007

Google Scholar

[28] D.B. Zhang, L.M. Qi, J.M. Ma, et al., Morphological control of calcium oxalate dihydrate by a double-hydrophilic block copolymer, J. Chem. Mater. 14 (2002) 2450-2457.

DOI: 10.1021/cm010768y

Google Scholar

[29] H. Tong, W.T. Ma, L.L. Wang, Control over the crystal phase, shape, size and aggregation of calcium carbonate via L-aspartic acid inducing process, Biomaterials. 25 (2004) 3923-3929.

DOI: 10.1016/j.biomaterials.2003.10.038

Google Scholar

[30] L. Cademartiri, J. Bertolotti, R. Sapienza, et al., Multigram Scale, Solventless, and Diffusion-Controlled Route to Highly Monodisperse PbS Nanocrystals, J. Phys. Chem. B 110 (2006) 671-673.

DOI: 10.1021/jp0563585

Google Scholar