[1]
C. Cheng, H.Y. Shu, Y.L. Wang, C.H. Li, P. Chen, Y.H. Shen, J.M. Song, A.J. Xie, Bioinspired Synthesis of Novel Teeth-Like Hierarchical Architecture Polyaniline/Lead Tungstate Nanocomposites with Photoluminescence Property, J. Polymer Composites 35 (2014).
DOI: 10.1002/pc.22690
Google Scholar
[2]
B.N. Grgur, A. Zeradjanin, M.M. Gvozdenovic´, M.D. Maksimovic´, T.L. Tri sovic´, B.Z. Jugovic´, Electrochemical characteristics of rechargeable polyaniline/lead dioxide cellJ, J. Power Sources 217 (2012) 193-198.
DOI: 10.1016/j.jpowsour.2012.06.025
Google Scholar
[3]
M. Zhong, Y. Song, Y. Li, C. Ma, X. Zhai, J. Shi, Q. Guo, L. Liu, Effect of reduced graphene oxide on the properties of an activated carbon cloth/polyaniline flexible electrode for supercapacitor application, Power Sources 217 (2012) 6-12.
DOI: 10.1016/j.jpowsour.2012.05.086
Google Scholar
[4]
M.V. Korzhik, V.B. Pavlenko, T.N. Timoschenko, et al., Spectroscopy and origin of radiation centers and scintillation in PbWO4 single crystals, physica. Status. solidi(a), 154(2) (1996) 779-788.
DOI: 10.1002/pssa.2211540231
Google Scholar
[5]
K. Nitsch, M. Nikl, S. Ganschow, P. Reiche and R. Uecker, Growth of lead tungstate single crystal scintillators, J. Cryst. Growth. 165 (1996) 163-165.
DOI: 10.1016/0022-0248(96)00167-4
Google Scholar
[6]
K. Tanji, M. Ishii, Y. Usuki, M. Kobayashi, K. Hara and H. Takano, Crystal growth of PbWO4 by the vertical Bridgman method: effect of crucible thickness and melt composition, J. Cryst. Growth, 204 (1999) 505-511.
DOI: 10.1016/s0022-0248(99)00231-6
Google Scholar
[7]
Y. Zhu, D. Hu, M. Wan, L. Jiang, Y. Wei, Conducting and Superhydrophobic Rambutan-like Hollow Spheres of Polyaniline, J. Adv. Mater. 19 (2007) 2092-(2096).
DOI: 10.1002/adma.200602135
Google Scholar
[8]
D. Chen, G. Shen, K. Tang and Z. Liang, AOT-microemulsions-based formation and evolution of PbWO4 crystals, J. Phys. Chem. B. 108 (2004) 11280-11284.
DOI: 10.1021/jp0377681
Google Scholar
[9]
J. Yu, X. Zhao, S. Liu, M. Li, S. Mann and D. Ng, Poly(methacrylic acid)-mediated morphosynthesis of PbWO4 micro-crystals, J. Appl. Phys. A. 87 (2007) 113-120.
DOI: 10.1007/s00339-006-3850-3
Google Scholar
[10]
J. Geng, J. Zhu, D. Lu and H. Chen, Hollow PbWO4 Nanospindles via a Facile Sonochemical Route, J. Inorg. Chem. 45 (2006) 8403-8407.
DOI: 10.1021/ic0608804
Google Scholar
[11]
G. Zhao, M. Lu, F. Gu, D. Yu and D. Yuan, Morphology-controlled synthesis, characterization and growth mechanism of PbWO4 nano and macrocrystals, J. Cryst. Growth. 276 (2005) 577-582.
DOI: 10.1016/j.jcrysgro.2004.11.428
Google Scholar
[12]
B. Liu, S. Yu, L. Li and Q. Zhang, Morphology Control of Stolzite Microcrystals with High Hierarchy in Solution*, J. Angew. Chem. Int. Edn. 43 (2004) 4745-4750.
DOI: 10.1002/anie.200460090
Google Scholar
[13]
Q. Zhang, W. Yao, X. Chen, L. Zhu, Y. Fu, G. Zhang, L. Sheng and S. Yu, Nearly Monodisperse Tungstate MWO4 Microspheres (M = Pb, Ca): Surfactant-Assisted Solution Synthesis and Optical Properties, J. Cryst. Growth Des. 7 (2007) 1423-1431.
DOI: 10.1021/cg060827q.s001
Google Scholar
[14]
S. Liu, J. Yu, X. Zhao and B. Cheng, Effects of polyvinylpyrrolidone and cetyltrimethylammonium bromide on morphology of lead tungstate particles, Alloys Compounds. 433 (2007) 73-78.
DOI: 10.1016/j.jallcom.2006.06.055
Google Scholar
[15]
L. Huo and Y. Chu, Controlled synthesis of PbWO4 crystals via microemulsion-based solvothermal method, Mater. Lett. 60 (2006) 2675-2681.
DOI: 10.1016/j.matlet.2006.01.064
Google Scholar
[16]
X. He and M. Cao, Synthesis and characterization of PbCrO4 and PbWO4 nanorods, Nanotechnology. 17 (2006) 3139-3143.
Google Scholar
[17]
J. Geng, Y.N. Lv, D.J. Lu and J.J. Zhu, Sonochemical synthesis of PbWO4 crystals with dendritic, flowery and star-like structures, Nanotechnology. 17 (2006) 2614–2620.
DOI: 10.1088/0957-4484/17/10/028
Google Scholar
[18]
J. Geng, Y. Lu, D. Lu and J. Zhu, Sonochemical synthesis of PbWO4 crystals with dendritic, flowery and star-like structures, Nanotechnology. 17 (2006) 2614-2620.
DOI: 10.1088/0957-4484/17/10/028
Google Scholar
[19]
J. Kloprogge, M. Weier, L. Duong andR. Frost, Microwave-assisted synthesis and characterisation of divalent metal tungstate nano-crystalline minerals: ferberite, hubnerite, sanmartinite, scheelite and stolziteMater, J. Chem. Phys. 88 (2004).
DOI: 10.1016/j.matchemphys.2004.08.013
Google Scholar
[20]
X. Hu and Y.J. Zhu, Morphology Control of PbWO4 Nano- and Microcrystals via a Simple, Seedless, and High-Yield Wet Chemical Route, Langmuir. 20 (2004)1521-1523.
DOI: 10.1021/la035578b
Google Scholar
[21]
D. Anderson, S. Virginia and T. Ciminelli, Electroceramic Materials of Tailored Phase and Morphology by Hydrothermal Technology, J. Chem. Mater. 15 (2003)1344-1352.
DOI: 10.1021/cm0210187
Google Scholar
[22]
D. Chen, K. Tang, F. Li, et al., A simple aqueous mineralization process to synthesize tetragonal molybdate microcrystallites, J. Cryst. growth des. 6(1) (2006) 247-252.
DOI: 10.1021/cg0503189
Google Scholar
[23]
L. Qi, H. C¨ olfen and M. Antonietti, Control of Barite Morphology by Double-Hydrophilic Block Copolymers, J. Chem. Mater. 12 (2000) 2392-2403.
DOI: 10.1021/cm0010405
Google Scholar
[24]
S. Yu, M. Antonietti, H. C¨ olfen and Hartmann, Growth and Self-Assembly of BaCrO4 and BaSO4 Nanofibers toward Hierarchical and Repetitive Superstructures by Polymer-Controlled Mineralization Reactions, J. Nano Lett. 3 (2003) 379-382.
DOI: 10.1021/nl025722y
Google Scholar
[25]
A.E. Andreeva, I.R. Karamancheva, Insight into the secondary structure of chloramphenicol acetyltransferase type I-computer analysis and FT-IR spectroscopic characterization of the protein structure, J. Mol. Struct. 565 (2001) 177-182.
DOI: 10.1016/s0022-2860(00)00893-0
Google Scholar
[26]
G. Zhou, M. Lu, Z. Xiu, et al., Controlled synthesis of high-quality PbS star-shaped dendrites, multi-pods, truncated nano-cubes, and nano-cubes and their shape evolution process, J. Phys. Chem. B. 110 (2006) 6543-6548.
DOI: 10.1021/jp0549881
Google Scholar
[27]
J.G. Yu, H. Tang, B. Cheng, et al., Morphological control of calcium oxalate particles in the presence of poly-(styrene-alt-maleic acid), J. Solid State Chem. 177 (2004) 3368-3374.
DOI: 10.1016/j.jssc.2004.06.007
Google Scholar
[28]
D.B. Zhang, L.M. Qi, J.M. Ma, et al., Morphological control of calcium oxalate dihydrate by a double-hydrophilic block copolymer, J. Chem. Mater. 14 (2002) 2450-2457.
DOI: 10.1021/cm010768y
Google Scholar
[29]
H. Tong, W.T. Ma, L.L. Wang, Control over the crystal phase, shape, size and aggregation of calcium carbonate via L-aspartic acid inducing process, Biomaterials. 25 (2004) 3923-3929.
DOI: 10.1016/j.biomaterials.2003.10.038
Google Scholar
[30]
L. Cademartiri, J. Bertolotti, R. Sapienza, et al., Multigram Scale, Solventless, and Diffusion-Controlled Route to Highly Monodisperse PbS Nanocrystals, J. Phys. Chem. B 110 (2006) 671-673.
DOI: 10.1021/jp0563585
Google Scholar