Synthesis and Characterization of CoFe2O4 & NiFe2O4 Magnetic Nanoparticles for Various Biomedical Applications: Cell Viability and Cell Death Evaluations

Article Preview

Abstract:

In this study, we report the synthesis and characterization studies of amine functionalized CoFe2O4 and NiFe2O4 nanoparticles (NPs). The synthesis process was accomplished by refluxing metal chloride precursors in ethylene glycol in presence of sodium acetate and ethanolamine. The average crystallite sizes of the synthesized particles are found to be in the range of 8-10 nm. The synthesized particles are characterized using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) technique, FTIR, Raman and UV-visible spectroscopy for crystal structure, average size, surface area, phase and functional group determination. The surface morphology and elemental composition were studied by Scanning electron microscope (SEM) and X-ray fluorescence (XRF) respectively. Magnetic behavior upto fields of 3T at room temperature measured in PPMS magnetometer showed the superparamagnetic behavior of these particles. Analysis of cytotoxicity was carried out by examining their effect on cell viability of human peripheral blood lymphocytes so as to assess biocompatibility for various biomedical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-8

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Bader, Colloquium: Opportunities in nanomagnetism Reviews of Modern Physics. 78(1) (2006) 1-15.

Google Scholar

[2] R.W. Wood, J. Miles and T. Olson, Magnetics, IEE Transactions. 38(4) (2002) 1711-1718.

Google Scholar

[3] C. P. Constantin, A. Doaga, A.M. Cojocarin, I. Doaga, A.M. Cojocarin, I. Dumitru and O. F. Caltun, J. Advance research. Phys. 2(1) (2011) 011106.

Google Scholar

[4] D. H. Chen and Y.Y. Chen, J. Colliod Interface Sci. 235(1) (2001) 9-14.

Google Scholar

[5] J. J. Kingsley, K. Suresh and K. C. Patil, J. Mater. Sci. 13(3) (1990) 179-189.

Google Scholar

[6] D. H. Chen and X. R. He, Bull. Mater. Res. 36 (2001) 1369-1377.

Google Scholar

[7] G. L. Messing, S. C. Zhang and G. V. Jyanti, J. Am. Ceram. Soc. 76 (1993) 2707-2726.

Google Scholar

[8] D.H. Chen and Y.Y. Chen, J. Collod Interface Sci. 236 (2001) 41-46.

Google Scholar

[9] J.L. Duan, J. Liu, H. J. Yao, D. Mo, M.D. Hou, Y.M. Sun, Y.F. Chen and L. Zhang, Mater. Sci. Eng. B. 147 (2008) 57-62.

Google Scholar

[10] D. Mo, J. Liu, H. J. Yao, J. L. Duan, M. D. Hou, Y. M. Sun, Y. F. Chen, Z. H. Xue and L. Zhang, J. Cryst. Growth, 310 (2008) 612-616.

Google Scholar

[11] R. H. Agaye, J. Zhao, L. Bowman and M. Ding, Exp. Ther. Med. 4 (2012) 641-647.

Google Scholar

[12] E. C. Snelling, Soft Ferrites: Properties and Applications, Butterworth, London, Uk, 2nd Edition, for drug delivery and hyperthermia (1989).

Google Scholar

[13] F. Liu, S. Laurent, A. Roch, L. V. Elst and R. N. Muller, J. Nanomaterials. 9 (2013) 127.

Google Scholar

[14] R. Y. Hong, B. Feng, L. L. Chen, G. H. Liu, H. Z. Li, Y. Zhang and D. G. We, Biochem. Eng. J. 42 (2008) 290-300.

Google Scholar

[15] G. Y. Li, Y. Jiang, K. Huang, P. Ding and P. Chen, J. Alloys. Comp. 466 (2008) 451-456.

Google Scholar

[16] A. B. Salunkhe, V. M. Khot, N. D. Thoral, M. R. Phadatare, C. I. Sathish, D. S. Dhawale and S. H. Pawar, App. Surface. Sci. 264 (2003) 598-604.

DOI: 10.1016/j.apsusc.2012.10.073

Google Scholar

[17] A. Mukhopadhyay, N. Joshi, K. D. Chattopadhyay and G. A. Facile, App. Mater. Interfaces. 4 (2012) 142-149.

Google Scholar

[18] R. D. Lima, J. D. Oliveira, A. Ludescher, M. M. Molina, R. Itri and A. B. Saebra and P. S. Haddad, J. Phys. 4290(12034) (2013) 1-7.

Google Scholar

[19] M.T. Al Samri, A V Biradar, A R Alsuwaidi, G Balhai, S. Al Hammadi, S. Shehab, S. Al Salam, S. Tariq, T. Pramathan, S. Benedict, T. Asefa and A. K. Souid. Int. J. Nanomedicine. 7 (2012) 3111-3121.

DOI: 10.2147/ijn.s32711

Google Scholar

[20] M. J. Santos Martinez, K. Rahme, J. J. Corbalan, J D Holmes, L. Taiber, C. Medina, M W Radomski, J. Biomed. Nanotechnol. 10 (2014) 1004-1015.

Google Scholar

[21] D. S. Ghasemian, M. Abdolahi, S. Manouchehri, S. H. Javanmard and N. Dana, J. Mol. Biomark Diagn. 4(3) (2013) 1-4.

Google Scholar

[22] R. A. Bohara, N. D. Thorat, H. M. Yadav and S. H. Pawar, New J. Chem. 38 (2014) 2979-2986.

Google Scholar

[23] S. Mohapatra, S. R. Rout and A. B. Panda, Collides and surfaces: Physicochem Eng. Aspects. 384 (2011) 453-460.

Google Scholar

[24] Z. H. Zhou, J. M. Xue, J. Wang, H. S. O. Chan, T. Yu and Z. X. Shen, J. App. Phys. 9(1)(2002) 6015-6020.

Google Scholar

[25] K. V. P. M Shafi, A. Gedanken, R. Prozorov and J. Balogh, Chem, Mater. 10 (1998) 3445-3450.

Google Scholar

[26] V. P. M. Kurikka, Y. K. Shafi, A. Gedanken, R. Prozorov, J. Lendvai and I. Felner, J. Phys. Chem. B. 101 (1999) 6409-6411.

Google Scholar

[27] B. D. Cullity, Introduction of Magnetic Materials, Addinson Wesley, New York (1972), p.190.

Google Scholar

[28] L. Wang, J. Ren, Y. Wang, X. Liu and Y. Wang, J. Alloys Compd. 490 (2010) 656-660.

Google Scholar

[29] S. Gyeryek, D. Makover, A. Kodre, I. Arcon, M. Jagodic and M. Drofenik, J. Nanopart. Res. 12 (2010) 1263-1273.

Google Scholar

[30] D. L. Huber, Small. 1(5) (2005) 482-501.

Google Scholar

[31] I. Zalite, G. Heidemane, M. Kodols, J. Grabis, M. Maiorov. ISSN Materials Science (Medziagotyra) (2012), Vol. 18(1), pp.1320-1392.

DOI: 10.5755/j01.ms.18.1.1332

Google Scholar