Barium Carbonate Nanorods Synthesized though Multi-Phase Equilibrium Microemulsions

Article Preview

Abstract:

Middle-phase microemulsions (MPMs) of two systems of a cationic surfactant tetradecyltrimethylammonium bromide (TTABr)/n-butanol/ iso-octane/Na2CO3 and TTABr/n-butanol/iso-octane/BaCl2 were obtained. The effect of n-butanol concentrations on the phase behavior of the MPMs for the two systems was investigated. MPMs provide a simple and versatile reaction media for preparing inorganic particles with nanometer scale. On the basis of the investigations on the phase behavior of the MPMs, herein the upper-phase microemulsions (water-in-oil, W/O), and bicontinuous microemulsions (B. C.) were used for synthesizing hierarchically structured barium carbonate (BaCO3) at the nanometer scale. The synthesized BaCO3 particles possess of nanostructures which were determined by Transmission Electron Microscopy (TEM) and X-ray diffraction (XRD).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-107

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.P. Pileni, Mesostructured fluids in oil-rich regions: structural and templating approaches, Langmuir 17(2001)7476-7486.

DOI: 10.1021/la010538y

Google Scholar

[2] C. Petit, A. Taleb, M.P. Pileni, Self-organization of magnetic nanosized cobalt particles, Adv. Mater. 10 (1998)259-261.

DOI: 10.1002/(sici)1521-4095(199802)10:3<259::aid-adma259>3.0.co;2-r

Google Scholar

[3] R. A. Martínez-Rodríguez, F. J. Vidal-Iglesias, J. Solla-Gullón, C. R. Cabrera, J. M. Feliu, Synthesis of Pt nanoparticles in water-in-oil microemulsion: effect of HCl on their surface structure, J. Am. Chem. Soc. 136(2014)1280−1283.

DOI: 10.1021/ja411939d

Google Scholar

[4] M. Li, H. Schnablegger, S. Mann, Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization, Nature 402(1999)393-395.

DOI: 10.1038/46509

Google Scholar

[5] M. Li, S. Mann, Emergence of morphological complexity in BaSO4 fibers synthesized in AOT microemulsions, Langmuir 16(2000)7088-7094.

DOI: 10.1021/la0000668

Google Scholar

[6] D. Waish, S. Mann, Fabrication of hollow porous shells of calcium carbonate from self-organizing media, Nature 377(1995)320-323.

DOI: 10.1038/377320a0

Google Scholar

[7] J. Hopwood, S. Mann, Synthesis of barium sulfate nanoparticles and nanofilaments in reverse micelles and microemulsions, Chem. Mater. 9(1997)1819-1828.

DOI: 10.1021/cm970113q

Google Scholar

[8] J. Hu, T. Odom, C. Lieber, Chemistry and physics in one dimension:  synthesis and properties of nanowires and nanotubes, Acc. Chem. Res. 32(1999)435-445.

DOI: 10.1021/ar9700365

Google Scholar

[9] G. Patzke, F. Krumeich, R. Nesper, Oxidic nanotubes and nanorods—anisotropic modules for a future nanotechnology, Angew. Chem. Int. Ed. 41(2002)2446-2461.

DOI: 10.1002/1521-3773(20020715)41:14<2446::aid-anie2446>3.0.co;2-k

Google Scholar

[10] I. Hamley, Nanotechnology with soft materials, Angew. Chem. Int. Ed. 42(2003)1692-1712.

DOI: 10.1002/anie.200200546

Google Scholar

[11] K. Torigoe, K. Esumi, Formation of nonspherical palladium nanocrystals in SDS/poly(acrylamide) gel, Langmuir 11(1995)4199-4201.

DOI: 10.1021/la00011a005

Google Scholar

[12] M. P. Pileni, The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals, Nature Mater. 2(2003)145-150.

DOI: 10.1038/nmat817

Google Scholar

[13] H. Cölfen, S. Yu, Biomimetic minereralization/synthesis of mesoscale order in hybrid inorganic-organic materials via nanoparticle self-assembly, MRS Bull 30(2005)727-735.

DOI: 10.1557/mrs2005.207

Google Scholar

[14] A. Zarur, J. Ying, Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion, Nature 403(2000)65-67.

DOI: 10.1038/47450

Google Scholar

[15] S. Pevzner, O. Regev, A. Lind, M. Lindén, Evidence for vesicle formation during the synthesis of catanionic templated mesoscopically ordered silica as studied by cryo-TEM, J. Am. Chem. Soc. 125(2003)652-653.

DOI: 10.1021/ja0289301

Google Scholar

[16] M. Teng, A. Song, L. Liu, J. Hao, Metal-ligand-coordinated vesicles and vesicle-assisted preparation of calcium oxalate, J. Phys. Chem. B 112(2008)1671-1675.

DOI: 10.1021/jp075767t

Google Scholar

[17] D. Hubert, M. Jung, P. Frederk, P. Bomans, J. Meuldijk, A. German, Vesicle-directed growth of silica, Adv. Mater. 12 (2000)1286-1290.

DOI: 10.1002/1521-4095(200009)12:17<1286::aid-adma1286>3.0.co;2-7

Google Scholar

[18] H. Hentze, S. Raghavan, C. McKelvey, E. Kaler, Silica hollow spheres by templating of catanionic vesicles, Langmuir 19(2003)1069-1074.

DOI: 10.1021/la020727w

Google Scholar

[19] L. Prince, Microemulsions, Academic Press, New York, (1977).

Google Scholar

[20] S. Friberg, I. Lapczynska, G. Gillberg, Microemulsions containing nonionic surfactants—The importance of the pit value, J. Colloid Inter. Sci. 56(1976)19-32.

DOI: 10.1016/0021-9797(76)90142-9

Google Scholar

[21] I. Scriven, Equilibrium bicontinuous structure, Nature 263(1976)123-125.

Google Scholar

[22] M.K. Sharma, D.O. Shah, Macromulsions in enhanced oil recovery, in: ACS Symposium Series, American Chemical Society, Washington DC, 1985, vol. 272, p.149.

Google Scholar

[23] Z. Yin, Y. Sakamoto, J. Yu, S. Sun, O. Terasaki, R. Xu, Microemulsion-based synthesis of titanium phosphate nanotubes via amine extraction system, J. Am . Chem. Soc. 126 (2004)8882-8883.

DOI: 10.1021/ja047684l

Google Scholar

[24] L. Qi, J. Ma, H. Cheng, Z. Zhao, Reverse micelle based formation of BaCO3 nanowires, J. Phys. Chem. B 101(1997)3460-3463.

DOI: 10.1021/jp970419k

Google Scholar

[25] S. Yu, H. Cölfen, A. Xu, W. Dong, Complex spherical BaCO3 superstructures self-assembled by a facile mineralization process under control of simple polyelectrolytes, Cryst. Growth Des. 4(2004)33-37.

DOI: 10.1021/cg0340906

Google Scholar

[26] S. Yu, H. Cölfen, K. Tauer, M. Antonietti, Tectonic arrangement of BaCO3 nanocrystals into helices induced by a racemic block copolymer, Nature Mater. 4(2005)51-55.

DOI: 10.1038/nmat1268

Google Scholar

[27] X. Guo, S. Yu, Controlled mineralization of barium carbonate mesocrystals in a mixed solvent and at the air/solution interface using a double hydrophilic block copolymer as a crystal modifier, Cryst. Growth Des. 7(2007)354-359.

DOI: 10.1021/cg060575t

Google Scholar

[28] D. Kuang, A. Xu, Y. Fang, H. Ou, H. Liu, Preparation of inorganic salts (CaCO3, BaCO3, CaSO4) nanowires in the Triton X-100/cyclohexane/water reverse micelles, J. Cryst. Growth 244(2002)379-383.

DOI: 10.1016/s0022-0248(02)01684-6

Google Scholar

[29] K. Chan, D.O. Shah, The molecular mechanism for achieving ultralow interfacial tention minimum in a petroleum sulfonate/oil/brine system, J. Dispers. Sci. Technol. 1(1980)55-95.

DOI: 10.1080/01932698008962161

Google Scholar

[30] D. Li, H. Wu, Z. Li, X. Cong, J. Sun, Z. Ren, L. Liu, Y. Li, D. Fan, J. Hao, Multi-phase equilibrium microemulsions-based routes to synthesize nanoscale BaWO4 spheres, cylinders and rods, J. Colloids Sur. A: Physchem. Eng. Aspect, 274(2006)18-23.

DOI: 10.1016/j.colsurfa.2005.08.033

Google Scholar

[31] R. Penn, J. Banfield, Imperfect oriented attachment: dislocation generation in defect-free nanocrystals, Science, 281(1998)969-971.

DOI: 10.1126/science.281.5379.969

Google Scholar

[32] J. Banfield, S. Welch, H. Zhang, T. Ebert, R. Renn, Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products, Science 289(2000)751-754.

DOI: 10.1126/science.289.5480.751

Google Scholar

[33] L. Lia, Y. Chua, , , Y. Liua, L. Donga, b, L. Huo, F. aYang, Microemulsion-based synthesis of BaCO3 nanobelts and nanorods, Mater. Lett. 60(2006)2138-2142. a.

DOI: 10.1016/j.matlet.2005.12.087

Google Scholar