ZnSe Quantum Dots through a Facile one Pot Synthesis Process

Article Preview

Abstract:

A novel one pot synthesis approach in oleic acid medium was employed to obtain monophasic ZnSe quantum dots (QD) of average size 3.7nm. The QDs were well crystalline in hexagonal phase as revealed by x-ray diffraction and high resolution transmission electron microscopy (HRTEM) studies. The ZnSe QDs exhibit sharp emission peak in the blue (465nm) with 385picosecond fluorescence decay time. The theoretical band gap corresponding to 3.7nm ZnSe QDs matched well with the measured 3.11eV band gap of synthesized QDs which thus showed quantum confinement effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-78

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. J. Zhang, C. L. Xu and B. X. Li, Microchim. Acta; 2009, 166, 61-68.

Google Scholar

[2] T. Li, Y. Y. Zhou, J. Y. Sun, D. B. Tang, S. X. Guo and X. P. Ding; Microchim. Acta, 2011, 175, 113-119.

Google Scholar

[3] L. Wang, R. Yang, J. Li, L. Qu; Anal. Methods, 2014, 6, 3449-3455.

Google Scholar

[4] Y. L. Li, J. Zhou, C. L. Liu and H. B. Li; J. Mater. Chem., 2012, 22, 2507-2511.

Google Scholar

[5] W. R. Algar, A. J. Tavares and U. J. Krull; Anal. Chim. Acta, 2010, 673, 1-25.

Google Scholar

[6] J. A. Chen, Y. Pei, Z. W. Chen and J. Y. Cai; Micron, 2010, 41, 198-202.

Google Scholar

[7] F. T. Quinlan, W. Tremel, S. Risbud, P. Stroeve; Langmuir, 2000, 16, 8.

Google Scholar

[8] J. Tian, R. Liu, Y. B. Zhao, Q. Xu and S. Zhao; J. Colloid Interface Sci., 2009, 336, 504-509.

Google Scholar

[9] Y. He, H. T. Lu, L. M. Sai, W. Y. Lai, Q. L. Fan, L. H. Wang, W. Huang; J. Phys. Chem. B, 2006, 110, 13370-13374.

Google Scholar

[10] H. Zhang, Z. Zhou, B. Yang and M. Y. Gao; J. Phys. Chem. B, 2003, 107, 8-13.

Google Scholar

[11] G. Y Lan, Y. W Lin, Y. F Huang, H. T. Chang; J. Mater. Chem, 2007, 17, 2661–2666.

Google Scholar

[12] E. Hao, H. Zhang, B. Yang, H. Ren, and J. Shen; J. Colloids Interf. Sci., 2001, 238, 285-290.

Google Scholar

[13] H. Jiang, X. Yao, J. Che, M. Wang, F. Kong; Ceram. International, 2004, 30, 1685-1689.

Google Scholar

[14] Y. Wang, X. Yao, M. Wang, F. Kong, and J. He; J. Cryst. Growth, 2004, 268, 580-584.

Google Scholar

[15] P. Reiss, G. Quemard, S. Carayon, J. Bleuse, F. Chandezon, A. Pron; Mater. Chem. Phys., 2004, 84, 10.

DOI: 10.1016/j.matchemphys.2003.11.002

Google Scholar

[16] J. H. Li , C. L. Ren , X. Y. Liu , Z. D. Hu , D. S. Xue; Mater Sci Eng A, 2001, 458, 319.

Google Scholar

[17] Q. L Wei , S. Z Kang , Mu J.; Colloid Surf A, 2004, 247, 125.

Google Scholar

[18] D. Bohua , C. Lixin , S. Ge , L. Wei; J. Phys. Chem. C, 2012, 116, 12258−12264.

Google Scholar

[19] L. L. Peng, Y.H. Wang, C.Y. Li, J. Nanosci. Nanotech. 2010, 10(3): 2113-8.

Google Scholar