Characterizaton and Volumetric Studies of Magnetite (Fe3O4) Nanofluids at Different Temperatures

Article Preview

Abstract:

Magnetite nanofluid has been prepared in citric acid based medium. Their stability and polydispersity level have been characterized by UV-visible spectrophotometry.The volumetric properties such as apparent molar volume, partial molar volume and isentropic compressibility of nanofluid have been measured at temperature range from 298.15K to 313.15K at atmospheric pressure. The obtained results were interpreted in terms of particle-particle and particle-fluid interactions, and compared with commercially available magnetite nanofluid in terms of particle size difference. It was observed that the influence of particle size on measured volumetric parameters is significant for any practical applications of fluid flow. The differences in measured quantities were determined qualitatively by considering the state of aggregation / particle size distribution of the nanofluids.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

28-35

Citation:

Online since:

December 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Bhimani and B. Wilson, New low cost ferrofluidic sealing challenges the mechanical seal, Ind. Lubr. Tribol. 49 (1997), 288-290.

DOI: 10.1108/00368799710189507

Google Scholar

[2] A. Hatch, A. E. Kamholz, G. Holman, P. Yagerand K. F. Bohringer, A Ferrofluidic Magnetic Micropump, J. Microelectromech. Syst. 10(2001), 215-221.

DOI: 10.1109/84.925748

Google Scholar

[3] Z. F. Gan, J.S. Jiang ,Y. Du. B. Yang, M. Qian and P. Zhang, Immobilization of homing peptide on magnetite nanoparticles and its specificity in vitro, J. Biomed. Res. 84 (2008), 10-18.

DOI: 10.1002/jbm.a.31181

Google Scholar

[4] J. S. Jiang,Z. F. Gan, Y. Du .B. Yang, M. Qian and P. Zhang, A novel magnetic fluid based on starch-coated magnetite nanoparticles functionalized with homing peptide, J. Nanopart. Res. 11(2009), 1321-1330.

DOI: 10.1007/s11051-008-9534-5

Google Scholar

[5] Y. Yang, J. S. Jiang, Z. F. Gan, Qian M and P. Zhang, Preparation and properties of a novel drug delivery system with both magnetic and biomolecular targeting, J. Mater. Sci. Mater. Med. 20(2009), 301-307.

DOI: 10.1007/s10856-008-3577-0

Google Scholar

[6] R. Saidur, K. Y. Leong and H. A. Mohammad, A review on applications and challenges of nanofluids, Renewable and Sustainable Energy Reviews15(2011), 1646-1668.

DOI: 10.1016/j.rser.2010.11.035

Google Scholar

[7] S. U. S. Choi, Nanofluid technology: current status and future research, Proceedings of the Korea-US Technical Conference on Strategic Technologies Vienna, USA, 22-28 (1998).

Google Scholar

[8] B. D. Murray, Local enhancement of heat transfer in a particulate cross flow—I Heat transfer mechanisms, Int. J. Multiphase Flow20(1994), 493-504.

DOI: 10.1016/0301-9322(94)90023-x

Google Scholar

[9] L. Fedele, L. Colla, S. Bobbo,S. Barison and Agresti, Experimental stability analysis of different water-based nanofluids, Nanoscale Research Letters6(2011), 1-8.

DOI: 10.1186/1556-276x-6-300

Google Scholar

[10] Y. Hwang and J. K. Lee, Production and dispersion stability of nanoparticles in nanofluids, Powder Technology186(2008), 145-153.

Google Scholar

[11] S. M. S. Murshed, K. C. Leong and C. Yang, Thermophysical and electrokinetic properties of nanofluids–a critical review, Appl. Therm. Eng. 28(2008), 2109-2125.

DOI: 10.1016/j.applthermaleng.2008.01.005

Google Scholar

[12] Y. He, Rapid Thermal Conductivity Measurement with a Hot Disk Sensor. Part 1: Theoretical Considerations, ThermochimicaActa436(2005), 122-129.

Google Scholar

[13] V. H. Grassian, "When Size Really Matters: Size-Dependent Properties and Surface Chemistry of Metal and Metal Oxide Nanoparticles in Gas and Liquid Phase Environments, Journal of Physical Chemistry C 112(2008), 18303-18313.

DOI: 10.1021/jp806073t

Google Scholar

[14] S. Bobbo, L. Colla and M. Scattolini, Thermal conductivity and viscosity measurements of water-based silica nanofluids, Proceedings of the Nanotech Conference and Expo, Boston, Mass, USA, June (2011).

Google Scholar

[15] M. A. Jamal, M. K. Khosa, A. B. Yousaf and S. Naz, Ultrasonic Studies on Magnetite (Fe3O4)Nanoparticles, Journal of Nanofluids3(2014), 1-7.

Google Scholar

[16] A. B. Yousaf, M. Khan, M. Imran, M. Usman, M. A. Jamal, Influence of particle size on density, ultrasonic velocity and viscosity of magnetite nanofluids at different temperatures, Nano 9 (2014), 1450089.

DOI: 10.1142/s1793292014500891

Google Scholar

[17] Z. Junwu, L. Dan, H. Chen, X. Yang, L. Lu and X. Wang, Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method, Material Letters58(2004), 3324-3327.

DOI: 10.1016/j.matlet.2004.06.031

Google Scholar

[18] G. M. J. Pastoriza, C. Casanova, J. L. Legido and M. M. Pineiro, CuO in water nanofluid: Influence of particle size and polydispersity on volumetric behaviour and viscosity, Fluid Phase Equilibria300 (2010), 188-196.

DOI: 10.1016/j.fluid.2010.10.015

Google Scholar

[19] T. X. Phuoc and M. Massoudi, Experimental observations of the effects of shear rates and particle concentration on the viscosity of Fe2O3–deionized water nanofluids, International J. Thermal Sciences, 48(2009), 1294-1301.

DOI: 10.1016/j.ijthermalsci.2008.11.015

Google Scholar

[20] B. Hawrylak, R. Palepu and P. R. Tremaine, Thermodynamics of Aqueous Methyldiethanol-amine (MDEA) and Methyldiethanolammonium Chloride (MDEAH+ Cl-) over a Wide Range of Temperature and Pressure:  Apparent Molar Volumes, Heat Capacities, and Isothermal Compressibilities,J. Chem. Thermodyn. 38 (2006).

DOI: 10.1016/j.jct.2005.10.013

Google Scholar

[21] J. F. Zhao, Z. Y. Luo, M. J. Niand K. F. Chen, Dependence of Nanofluid Viscosity on Particle Size and pH Value, Chin. Phys. Lett. 26(2009), 066202.

Google Scholar

[22] D. O. Masson, Solute molecular volumes in relation to solvation and ionization, Phil. Mag. 79(1929), 218-235.

Google Scholar

[23] R. Kiruba, M. Gopalakrishnan, T. Mahalingamand S. J. Kingson, Ultrasonic Studies on Zinc Oxide Nanofluids, Journal of Nanofluids1 (2012) , 97.

Google Scholar

[24] M. T. Zafarani-Moattar andR. Majdan-Cegincara, Effect of temperature on volumetric and transport properties of nanofluids containing ZnO nanoparticles poly(ethylene glycol) and water, J. Chem. Thermodynamics, 54(2012) 55-67.

DOI: 10.1016/j.jct.2012.03.010

Google Scholar

[25] O. Kratky, H. Leopold and H. Stabinger, The determination of the partial specific volume of proteins by the mechanical oscillator technique, Methods Enzymol. 27(1973), 98-110.

DOI: 10.1016/s0076-6879(73)27007-6

Google Scholar

[26] A. Apelblat, E. Manzurola and Z. Orekhova, Thermodynamic Properties of Aqueous Electrolyte Solutions. Volumetric and Compressibility Studies in 0. 1 mol·kg−1, 0. 5 mol·kg−1, and 1. 0 mol·kg−1 Sodium Carbonate and Sodium Sulfate Solutions at Temperatures from 278. 15 K to 323. 15 K, J. Chem. Eng. Data54 (2009).

DOI: 10.1021/je900108f

Google Scholar