Synthesis and Optical Characterization of CuO Nanoparticles on Solar Borosilicate Glass

Article Preview

Abstract:

In this communication we report on the optical property of CuO nanoparticles prepared by cost effective, simplistic and environment-friendly sol-gel technique on borosilicate glass by dip coating. The particle size was analyzed by Transmission Electron Microscope (TEM) which depicted particle size of CuO ~ 5 nm. To understand the optical behavior of nanosized CuO particles on borosilicate glass tube UV-visible spectrum has been taken. Effective mass model calculations determined the size of particles as 2.26 nm, which supports the TEM analysis. Samples were also analyzed by Fourier transform infrared spectrum (FT-IR) to understand the chemical bond in detail.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

68-73

Citation:

Online since:

December 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.C. Roco, Broader societal issues of nanotechnology, J Nano. Res. 5 (2003) 181–189.

Google Scholar

[2] R.N. Parmar, J.H. Markna, P.S. Solanki, R.R. Doshi, P.S. Vachhani, D.G. Kuberkar, Grain Size Dependent Transport and Magnetoresistance Behavior of Chemical Solution Deposition Grown Nanostructured La0. 7Sr0. 3MnO3 Manganite Films, J Nanoscience and Nanotechnology. 8 (2008).

DOI: 10.1166/jnn.2008.an51

Google Scholar

[3] J.H. Markna, P.S. Vachhani, R.N. Parmar, D.G. Kuberkar, P. Mishra, B.N. Singh, L.M. Kukreja, D.S. Rana, Enhancement of electronic transport and magnetoresistance of Al2O3-impregnated (La0. 5Pr0. 2)Sr0. 3MnO3 thin films, Euro. Phys. Lett. 79 (2007).

DOI: 10.1209/0295-5075/79/17005

Google Scholar

[4] Ma. J. Guajardo-Pacheco, J.E. Morales-Sanchz, J. Gonzalez-Hernandez, F. Ruiz, Synthesis of copper nanoparticles using soybeans as a chelant agent, Mater. Lett. 64 (2010) 1361-1364.

DOI: 10.1016/j.matlet.2010.03.029

Google Scholar

[5] Y. Xi, C. Hu, P. Gao, R. Yang, X. He, X. Wang, B. Wan, Morphology and phase selective synthesis of CuxO (x=1, 2) nanostructures and their catalytic degradation activity, Mat. Scie. and Eng. 166 (2010) 113-117.

DOI: 10.1016/j.mseb.2009.10.008

Google Scholar

[6] Y. He, Novel solid stabilized Emulsion approach to CuO nanostructure microspheres, Mat. Res. Bull. 42 (2007) 190-195.

DOI: 10.1016/j.materresbull.2006.05.020

Google Scholar

[7] X. Qijie, L. Xiaohong, Z. Zhijung, Preparation of Copper nanoparticles-improved polyamide 6 composites by an in situ solution rout with cupric oxide as the metallic copper source and investigation of their properties, New J. Chem. 39 (2015).

DOI: 10.1039/c4nj02302a

Google Scholar

[8] K. Phiwdang, S. Suphankij, W. Mekprasart, W. Pecharapa, Synthsis of CuO Nanoparticles by precipitation method using different precursors, Energy Procedia. 34 92013) 240-245.

DOI: 10.1016/j.egypro.2013.06.808

Google Scholar

[9] H. Kawasaki,Y. Kosaka, Y. Myoujin, T. Narushima, T. Yonezawa, R. Arakawa, Microwave assisted polyol of synthesis of copper nanocrystals without using additional protective agents, Chem. Commun. 47 (2011) 7740–7742.

DOI: 10.1039/c1cc12346g

Google Scholar

[10] G. Socrates, Infrared and Raman Characteristic Group Frequencies, third ed., John Wiley & Sons Ltd, (2004).

DOI: 10.1002/jrs.1238

Google Scholar

[11] C.A. Melendres, G.A. Bowmaker, J.M. Leger, B.J. Beden, In-situ synchrotron far infrared spectroscopy of surface lms on a copper electrode in aqueous solutions, J. Electroanal. Chem. 449 (1998) 215-218.

DOI: 10.1016/s0022-0728(97)00609-8

Google Scholar

[12] M.P. Pileni, I. Lisiecki, Nanometer Metallic Copper Particle Synthesis in Reverse Micelles, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 80. 1 (1993) 63-68.

DOI: 10.1016/0927-7757(93)80224-3

Google Scholar

[13] Q. Xie, F. McCourt, Nanotechnology Engineering NE 320L Lab Manual, University of Waterloo. (2008) 23-30.

Google Scholar