[1]
Y. Min, K. Zhang, L. Chen, Y. Chen, Y. Zhang, Ionic liquid assisting synthesis of ZnO/graphene heterostructure photocatalysts with tunable photoresponse properties, Diamond Relat. Mater., 26 (2012) 32-38.
DOI: 10.1016/j.diamond.2012.04.003
Google Scholar
[2]
T. Kavitha, A.I. Gopalan, K. -P. Lee, S. -Y. Park, Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids, Carbon, 50 (2012) 2994-3000.
DOI: 10.1016/j.carbon.2012.02.082
Google Scholar
[3]
O. Akhavan, R. Azimirad, S. Safa, Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria, Mater. Chem. Phys., 130 (2011) 598-602.
DOI: 10.1016/j.matchemphys.2011.07.030
Google Scholar
[4]
J. -H. Sun, S. -Y. Dong, Y. -K. Wang, S. -P. Sun, Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst, J. Hazard. Mater., 172 (2009) 1520-1526.
DOI: 10.1016/j.jhazmat.2009.08.022
Google Scholar
[5]
T. Xu, L. Zhang, H. Cheng, Y. Zhu, Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study, Appl. Catal., B, 101 (2011) 382-387.
DOI: 10.1016/j.apcatb.2010.10.007
Google Scholar
[6]
B. Cheng, E.T. Samulski, Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios, Chem. Commun., 8 (2004) 986-987.
DOI: 10.1039/b316435g
Google Scholar
[7]
A. Kajbafvala, H. Ghorbani, A. Paravar, J.P. Samberg, E. Kajbafvala, S. Sadrnezhaad, Effects of morphology on photocatalytic performance of Zinc oxide nanostructures synthesized by rapid microwave irradiation methods, Superlattices Microstruct., 51 (2012).
DOI: 10.1016/j.spmi.2012.01.015
Google Scholar
[8]
C. Ren, B. Yang, M. Wu, J. Xu, Z. Fu, T. Guo, Y. Zhao, C. Zhu, Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance, J. Hazard. Mater., 182 (2010) 123-129.
DOI: 10.1016/j.jhazmat.2010.05.141
Google Scholar
[9]
R. Azimirad, A. Khayatian, S. Safa, M.A. Kashi, Enhancing photoresponsivity of ultra violet photodetectors based on Fe doped ZnO/ZnO shell/core nanorods, J. Alloys Compd., 615 (2014) 227-233.
DOI: 10.1016/j.jallcom.2014.06.157
Google Scholar
[10]
O. Akhavan, R. Azimirad, S. Safa, M. Larijani, Visible light photo-induced antibacterial activity of CNT–doped TiO2 thin films with various CNT contents, J. Mater. Chem., 20 (2010) 7386-7392.
DOI: 10.1039/c0jm00543f
Google Scholar
[11]
X. Liu, L. Pan, T. Lv, T. Lu, G. Zhu, Z. Sun, C. Sun, Microwave-assisted synthesis of ZnO–graphene composite for photocatalytic reduction of Cr (VI), Catal. Sci. Technol., 1 (2011) 1189-1193.
DOI: 10.1039/c1cy00109d
Google Scholar
[12]
S. Safa, R. Sarraf-Mamoory, R. Azimirad, Investigation of reduced graphene oxide effects on ultra-violet detection of ZnO thin film, Physica E: Low-dimensional Systems and Nanostructures 57 (2014) 155-160.
DOI: 10.1016/j.physe.2013.10.029
Google Scholar
[13]
S. Safa, R. Sarraf-Mamoory, R. Azimirad, Ultra-violet photodetection enhancement based on ZnO–graphene composites fabricated by sonochemical method, Journal of Sol-Gel Science and Technology 74 (2015) 499-506.
DOI: 10.1007/s10971-015-3625-4
Google Scholar
[14]
B. Li, H. Cao, ZnO@graphene composite with enhanced performance for the removal of dye from water, J. Mater. Chem., 21 (2011) 3346-3349.
DOI: 10.1039/c0jm03253k
Google Scholar
[15]
Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev., 41 (2012) 782-796.
DOI: 10.1039/c1cs15172j
Google Scholar
[16]
O. Akhavan, E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria, ACS Nano, 4 (2010) 5731-5736.
DOI: 10.1021/nn101390x
Google Scholar
[17]
M.S. Mohajerani, A. Lak, A. Simchi, Effect of morphology on the solar photocatalytic behavior of ZnO nanostructures, J. Alloys Compd., 485 (2009) 616-620.
DOI: 10.1016/j.jallcom.2009.06.054
Google Scholar
[18]
H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu, D. Que, Synthesis of flower-like ZnO nanostructures by an organic-free hydrothermal process, Nanotechnology, 15 (2004) 622-626.
DOI: 10.1088/0957-4484/15/5/037
Google Scholar
[19]
M.A. Abbasi, Y. Khan, S. Hussain, O. Nur, M. Willander, Anions effect on the low temperature growth of ZnO nanostructures, Vacuum, 86 (2012) 1998-(2001).
DOI: 10.1016/j.vacuum.2012.05.020
Google Scholar
[20]
C. -H. Lu, C. -H. Yeh, Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder, Ceram. Int., 26 (2000) 351-357.
DOI: 10.1016/s0272-8842(99)00063-2
Google Scholar
[21]
X. Zhou, T. Shi, H. Zhou, Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation, Applied surface science 258 (2012) 6204-6211.
DOI: 10.1016/j.apsusc.2012.02.131
Google Scholar
[22]
L. Ph. Bérubé, G. L'Espérance, A quantitative method of determining the degree of texture of zinc electrodeposits, J. Electrochem. Soc., 136 (1989) 2314-2315.
DOI: 10.1149/1.2097318
Google Scholar
[23]
D. Fu, G. Han, Y. Chang, J. Dong, The synthesis and properties of ZnO–graphene nano hybrid for photodegradation of organic pollutant in water, Mater. Chem. Phys., 132 (2012) 673-681.
DOI: 10.1016/j.matchemphys.2011.11.085
Google Scholar
[24]
Y. Abdi, M. Khalilian, E. Arzi, Enhancement in photo-induced hydrophilicity of TiO2/CNT nanostructures by applying voltage, J. Phys. D: Appl. Phys., 44 (2011) 255405.
DOI: 10.1088/0022-3727/44/25/255405
Google Scholar
[25]
X. Zhou, T. Shi, H. Zhou, Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation, Appl. Surf. Sci., 258 (2012) 6204-6211.
DOI: 10.1016/j.apsusc.2012.02.131
Google Scholar
[26]
Z. Chen, N. Zhang, Y. -J. Xu, Synthesis of graphene–ZnO nanorod nanocomposites with improved photoactivity and anti-photocorrosion, Cryst. Eng. Comm., 15 (2013) 3022-3030.
DOI: 10.1039/c3ce27021a
Google Scholar
[27]
J. Wu, X. Shen, L. Jiang, K. Wang, K. Chen, Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites, Appl. Surf. Sci., 256 (2010) 2826-2830.
DOI: 10.1016/j.apsusc.2009.11.034
Google Scholar
[28]
Y. Yang, T. Liu, Fabrication and characterization of graphene oxide/zinc oxide nanorods hybrid, Applied Surface Science 257 (2011) 8950-8954.
DOI: 10.1016/j.apsusc.2011.05.070
Google Scholar
[29]
J. M. Lee, Y. B. Pyun, J. Yi, J. W. Choung, W. I. Park, ZnO nanorod− graphene hybrid architectures for multifunctional conductors, J. Phys. Chem. C 113 (2009) 19134-19138.
DOI: 10.1021/jp9078713
Google Scholar
[30]
D. Wood, J. Tauc, Weak absorption tails in amorphous semiconductors, Phys. Rev. B: Condens. Matter, 5 (1972) 3144.
DOI: 10.1103/physrevb.5.3144
Google Scholar
[31]
Y. Li, X. Li, J. Li, J. Yin, Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study, Water Res., 40 (2006) 1119-1126.
DOI: 10.1016/j.watres.2005.12.042
Google Scholar
[32]
W. Wang, P. Serp, P. Kalck, J.L. Faria, Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method, J. Mol. Catal. A: Chem., 235 (2005) 194-199.
DOI: 10.1016/j.molcata.2005.02.027
Google Scholar
[33]
J. L. Yang, S.J. An, W.I. Park, G.C. Yi, W. Choi, Photocatalysis using ZnO thin films and nanoneedles grown by metal–organic chemical vapor deposition, Adv. Mater., 16 (2004) 1661-1664.
DOI: 10.1002/adma.200306673
Google Scholar
[34]
P.T. Hang, G. Brindley, Methylene blue absorption by clay minerals. Determination of surface areas and cation exchange capacities (clay-organic studies XVIII), Clays Clay Miner., 18 (1970) 203-212.
DOI: 10.1346/ccmn.1970.0180404
Google Scholar
[35]
H. Wang, C. Xie, W. Zhang, S. Cai, Z. Yang, Y. Gui, Comparison of dye degradation efficiency using ZnO powders with various size scales, J. Hazard. Mater., 141 (2007) 645-652.
DOI: 10.1016/j.jhazmat.2006.07.021
Google Scholar
[36]
L. Xu, Y. -L. Hu, C. Pelligra, C. -H. Chen, L. Jin, H. Huang, S. Sithambaram, M. Aindow, R. Joesten, S.L. Suib, ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity, Chem. Mater., 21 (2009).
DOI: 10.1021/cm900608d
Google Scholar
[37]
Z. Khan, T.R. Chetia, A.K. Vardhaman, D. Barpuzary, C.V. Sastri, M. Qureshi, Visible light assisted photocatalytic hydrogen generation and organic dye degradation by CdS–metal oxide hybrids in presence of graphene oxide, RSC Adv., 2 (2012).
DOI: 10.1039/c2ra21596a
Google Scholar