Photocatalytic Activity of One-Pot Synthesized Reduced Graphene Oxide – Zinc Oxide Nanocomposites

Article Preview

Abstract:

In this research, reduced graphene oxide/zinc oxide nanocomposites (rGO/ZnO) were synthesized at different pHs (9, 10, 11 and 12) by using one-pot hydrothermal bath method., The obtained nanocomposites characterized by using X-ray diffractometer, Fourier transform infrared, Raman, scanning electronic microscope and diffuse reflection spectroscopy techniques. Photocatalytic activity of nanocomposites were evaluated by monitoring the photodegradation of 4-nitrophenol (4-NP) in water exposed to ultraviolet and visible light irradiation. The morphological and structural results have been shown that at pHs of 9 and 10, the ZnO nearly aggregated nanoparticle are crystalized, while at higher pHs (11 and 12), the preferential growth of ZnO in the form of nanorods is seen. Comparative studies on photocatalytic performance of the nanocomposites shows that ZnO nanorods have better photocatalytic activities than the others.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

74-84

Citation:

Online since:

December 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Min, K. Zhang, L. Chen, Y. Chen, Y. Zhang, Ionic liquid assisting synthesis of ZnO/graphene heterostructure photocatalysts with tunable photoresponse properties, Diamond Relat. Mater., 26 (2012) 32-38.

DOI: 10.1016/j.diamond.2012.04.003

Google Scholar

[2] T. Kavitha, A.I. Gopalan, K. -P. Lee, S. -Y. Park, Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids, Carbon, 50 (2012) 2994-3000.

DOI: 10.1016/j.carbon.2012.02.082

Google Scholar

[3] O. Akhavan, R. Azimirad, S. Safa, Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria, Mater. Chem. Phys., 130 (2011) 598-602.

DOI: 10.1016/j.matchemphys.2011.07.030

Google Scholar

[4] J. -H. Sun, S. -Y. Dong, Y. -K. Wang, S. -P. Sun, Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst, J. Hazard. Mater., 172 (2009) 1520-1526.

DOI: 10.1016/j.jhazmat.2009.08.022

Google Scholar

[5] T. Xu, L. Zhang, H. Cheng, Y. Zhu, Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study, Appl. Catal., B, 101 (2011) 382-387.

DOI: 10.1016/j.apcatb.2010.10.007

Google Scholar

[6] B. Cheng, E.T. Samulski, Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios, Chem. Commun., 8 (2004) 986-987.

DOI: 10.1039/b316435g

Google Scholar

[7] A. Kajbafvala, H. Ghorbani, A. Paravar, J.P. Samberg, E. Kajbafvala, S. Sadrnezhaad, Effects of morphology on photocatalytic performance of Zinc oxide nanostructures synthesized by rapid microwave irradiation methods, Superlattices Microstruct., 51 (2012).

DOI: 10.1016/j.spmi.2012.01.015

Google Scholar

[8] C. Ren, B. Yang, M. Wu, J. Xu, Z. Fu, T. Guo, Y. Zhao, C. Zhu, Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance, J. Hazard. Mater., 182 (2010) 123-129.

DOI: 10.1016/j.jhazmat.2010.05.141

Google Scholar

[9] R. Azimirad, A. Khayatian, S. Safa, M.A. Kashi, Enhancing photoresponsivity of ultra violet photodetectors based on Fe doped ZnO/ZnO shell/core nanorods, J. Alloys Compd., 615 (2014) 227-233.

DOI: 10.1016/j.jallcom.2014.06.157

Google Scholar

[10] O. Akhavan, R. Azimirad, S. Safa, M. Larijani, Visible light photo-induced antibacterial activity of CNT–doped TiO2 thin films with various CNT contents, J. Mater. Chem., 20 (2010) 7386-7392.

DOI: 10.1039/c0jm00543f

Google Scholar

[11] X. Liu, L. Pan, T. Lv, T. Lu, G. Zhu, Z. Sun, C. Sun, Microwave-assisted synthesis of ZnO–graphene composite for photocatalytic reduction of Cr (VI), Catal. Sci. Technol., 1 (2011) 1189-1193.

DOI: 10.1039/c1cy00109d

Google Scholar

[12] S. Safa, R. Sarraf-Mamoory, R. Azimirad, Investigation of reduced graphene oxide effects on ultra-violet detection of ZnO thin film, Physica E: Low-dimensional Systems and Nanostructures 57 (2014) 155-160.

DOI: 10.1016/j.physe.2013.10.029

Google Scholar

[13] S. Safa, R. Sarraf-Mamoory, R. Azimirad, Ultra-violet photodetection enhancement based on ZnO–graphene composites fabricated by sonochemical method, Journal of Sol-Gel Science and Technology 74 (2015) 499-506.

DOI: 10.1007/s10971-015-3625-4

Google Scholar

[14] B. Li, H. Cao, ZnO@graphene composite with enhanced performance for the removal of dye from water, J. Mater. Chem., 21 (2011) 3346-3349.

DOI: 10.1039/c0jm03253k

Google Scholar

[15] Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev., 41 (2012) 782-796.

DOI: 10.1039/c1cs15172j

Google Scholar

[16] O. Akhavan, E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria, ACS Nano, 4 (2010) 5731-5736.

DOI: 10.1021/nn101390x

Google Scholar

[17] M.S. Mohajerani, A. Lak, A. Simchi, Effect of morphology on the solar photocatalytic behavior of ZnO nanostructures, J. Alloys Compd., 485 (2009) 616-620.

DOI: 10.1016/j.jallcom.2009.06.054

Google Scholar

[18] H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu, D. Que, Synthesis of flower-like ZnO nanostructures by an organic-free hydrothermal process, Nanotechnology, 15 (2004) 622-626.

DOI: 10.1088/0957-4484/15/5/037

Google Scholar

[19] M.A. Abbasi, Y. Khan, S. Hussain, O. Nur, M. Willander, Anions effect on the low temperature growth of ZnO nanostructures, Vacuum, 86 (2012) 1998-(2001).

DOI: 10.1016/j.vacuum.2012.05.020

Google Scholar

[20] C. -H. Lu, C. -H. Yeh, Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder, Ceram. Int., 26 (2000) 351-357.

DOI: 10.1016/s0272-8842(99)00063-2

Google Scholar

[21] X. Zhou, T. Shi, H. Zhou, Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation, Applied surface science 258 (2012) 6204-6211.

DOI: 10.1016/j.apsusc.2012.02.131

Google Scholar

[22] L. Ph. Bérubé, G. L'Espérance, A quantitative method of determining the degree of texture of zinc electrodeposits, J. Electrochem. Soc., 136 (1989) 2314-2315.

DOI: 10.1149/1.2097318

Google Scholar

[23] D. Fu, G. Han, Y. Chang, J. Dong, The synthesis and properties of ZnO–graphene nano hybrid for photodegradation of organic pollutant in water, Mater. Chem. Phys., 132 (2012) 673-681.

DOI: 10.1016/j.matchemphys.2011.11.085

Google Scholar

[24] Y. Abdi, M. Khalilian, E. Arzi, Enhancement in photo-induced hydrophilicity of TiO2/CNT nanostructures by applying voltage, J. Phys. D: Appl. Phys., 44 (2011) 255405.

DOI: 10.1088/0022-3727/44/25/255405

Google Scholar

[25] X. Zhou, T. Shi, H. Zhou, Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation, Appl. Surf. Sci., 258 (2012) 6204-6211.

DOI: 10.1016/j.apsusc.2012.02.131

Google Scholar

[26] Z. Chen, N. Zhang, Y. -J. Xu, Synthesis of graphene–ZnO nanorod nanocomposites with improved photoactivity and anti-photocorrosion, Cryst. Eng. Comm., 15 (2013) 3022-3030.

DOI: 10.1039/c3ce27021a

Google Scholar

[27] J. Wu, X. Shen, L. Jiang, K. Wang, K. Chen, Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites, Appl. Surf. Sci., 256 (2010) 2826-2830.

DOI: 10.1016/j.apsusc.2009.11.034

Google Scholar

[28] Y. Yang, T. Liu, Fabrication and characterization of graphene oxide/zinc oxide nanorods hybrid, Applied Surface Science 257 (2011) 8950-8954.

DOI: 10.1016/j.apsusc.2011.05.070

Google Scholar

[29] J. M. Lee, Y. B. Pyun, J. Yi, J. W. Choung, W. I. Park, ZnO nanorod− graphene hybrid architectures for multifunctional conductors, J. Phys. Chem. C 113 (2009) 19134-19138.

DOI: 10.1021/jp9078713

Google Scholar

[30] D. Wood, J. Tauc, Weak absorption tails in amorphous semiconductors, Phys. Rev. B: Condens. Matter, 5 (1972) 3144.

DOI: 10.1103/physrevb.5.3144

Google Scholar

[31] Y. Li, X. Li, J. Li, J. Yin, Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study, Water Res., 40 (2006) 1119-1126.

DOI: 10.1016/j.watres.2005.12.042

Google Scholar

[32] W. Wang, P. Serp, P. Kalck, J.L. Faria, Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method, J. Mol. Catal. A: Chem., 235 (2005) 194-199.

DOI: 10.1016/j.molcata.2005.02.027

Google Scholar

[33] J. L. Yang, S.J. An, W.I. Park, G.C. Yi, W. Choi, Photocatalysis using ZnO thin films and nanoneedles grown by metal–organic chemical vapor deposition, Adv. Mater., 16 (2004) 1661-1664.

DOI: 10.1002/adma.200306673

Google Scholar

[34] P.T. Hang, G. Brindley, Methylene blue absorption by clay minerals. Determination of surface areas and cation exchange capacities (clay-organic studies XVIII), Clays Clay Miner., 18 (1970) 203-212.

DOI: 10.1346/ccmn.1970.0180404

Google Scholar

[35] H. Wang, C. Xie, W. Zhang, S. Cai, Z. Yang, Y. Gui, Comparison of dye degradation efficiency using ZnO powders with various size scales, J. Hazard. Mater., 141 (2007) 645-652.

DOI: 10.1016/j.jhazmat.2006.07.021

Google Scholar

[36] L. Xu, Y. -L. Hu, C. Pelligra, C. -H. Chen, L. Jin, H. Huang, S. Sithambaram, M. Aindow, R. Joesten, S.L. Suib, ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity, Chem. Mater., 21 (2009).

DOI: 10.1021/cm900608d

Google Scholar

[37] Z. Khan, T.R. Chetia, A.K. Vardhaman, D. Barpuzary, C.V. Sastri, M. Qureshi, Visible light assisted photocatalytic hydrogen generation and organic dye degradation by CdS–metal oxide hybrids in presence of graphene oxide, RSC Adv., 2 (2012).

DOI: 10.1039/c2ra21596a

Google Scholar