Properties of Silver and Copper Nanoparticle Containing Aqueous Suspensions and Evaluation of their In Vitro Activity against Candida albicans and Staphylococcus aureus Biofilms

Article Preview

Abstract:

Most microorganisms grow on surfaces as biofilms rather than as individual planktonic cells, and cells within biofilms show high levels of resistance against antimicrobial drugs. Thereby biofilm formation complicates treatment and contributes to high morbidity and mortality rates associated with infections. This study explores the physical, optical, and nano-structural properties of silver and copper nanoparticles dispersed in aqueous suspensions (nanoparticulate colloidal water) and examines their in vitro activity against microbial biofilms. Silver and copper nanoparticulate colloidal water of various concentrations were prepared and studied. Their surface energies, surface charge and surface plasmonic resonance properties were determined using contact angle measurement, zeta potential measurement and optical spectrometry, respectively. A model of biofilm formation on the wells of microtiter plates was used to determine the activity of the nanoparticulate suspensions against fungal and bacterial biofilms. Scanning electron microscopy (SEM) was used to observe the nanoparticle interactions with microbial cells within the biofilms. Results show that silver nanoparticle-containing liquids have higher surface energy than their copper counterparts; and that the surface energy increases as the concentration of silver nanoparticles increases. Altogether, the effectiveness of silver nanoparticle colloidal suspensions in controlling biofilm formation is observed and reported. For a given size of silver nanoparticles studied, it is found that the effective concentrations against microbial biofilms are far lower than their cytotoxic concentrations, indicating an overall safety and a good therapeutic index thus substantial application potential.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-121

Citation:

Online since:

December 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Costerton, Z. Lewandowski, D.E. Caldwell, D.R. Korber, H.M. Lappin-Scott, Annual Review on Microbiology, 49 (1995) 711-745.

DOI: 10.1146/annurev.mi.49.100195.003431

Google Scholar

[2] J.J. Harrison, R.J. Turner, L.L. Marques, C. Howard, American Scientist, (2005) 508, 510-515.

Google Scholar

[3] D. Davies, Nature Drug Discovery, 2 (2003) 114-122.

Google Scholar

[4] C.A. Fux, J.W. Costerton, P.S. Stewart, P. Stoodley, TRENDS in Microbiology, 13 (2005) 34-40.

DOI: 10.1016/j.tim.2004.11.010

Google Scholar

[5] H.F. Wertheim, M.C. Voss, A. Belkum, A. Voss, J.A. Kluytmans, P.H.V. Keulen, C.M. Vandenbroucke, M.H. Meester, H.A. Verbrugh, The Lancet, 364 (2004) 703-705.

DOI: 10.1016/s0140-6736(04)16897-9

Google Scholar

[6] A.G. Mainous, V.A. Diaz, E.M. Matheson, S.H. Gregorie, W.J. Hueston, Public Health Reports, 126 354-360.

DOI: 10.1177/003335491112600309

Google Scholar

[7] G. Brown, D. Denning, N. Gow, S. Levitz, M. Netea, T. White, SCi Transl Med, 4 (2012).

Google Scholar

[8] M. Pfaller, D. Diekema, Clin Microbiol Rev, 20 (2007) 133-163.

Google Scholar

[9] O. Gudlaugsson, S. Gillespie, K. Lee, J.V. Berg, J. Hu, S. Messer, Clin Infect Dis, 37 (2003) 1172-1177.

Google Scholar

[10] C.G. Pierce, P. Uppuluri, A.R. Tristan, F.L. Wormley, E. Mowat, G. Ramage, J.L. Lopez-Ribot, Nature Protocols, 3 (2008) 1494-1500.

DOI: 10.1038/nport.2008.141

Google Scholar

[11] R.V. Ravishankar, B.A. Jamuna, Science against microbial pathogens, (2011) 192-209.

Google Scholar

[12] S. Gavanji, B. Larki, M. Mehrasa, Technical Journal of Engineering and Applied Sciences, (2013) 48-58.

Google Scholar

[13] G. Cao, Nanostructures and Nanomaterials: Synthesis, Properties, and Applications, Imperial College Press, London, UK, (2004).

Google Scholar

[14] E. Roduner, Nanoscopic Materials Size-depedent Phenomena, The Royal Society of Chemestry, United Kingdom, (2006).

Google Scholar

[15] E. Roduner, The Royal Society of Chemistry, 35 (2006) 583-592.

Google Scholar

[16] M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, D.J. d. Aberasturi, I.R. d. Larramendi, T. Rojo, V. Serpooshan, W.J. Parak, M. Mahmoudi, Trends in Biotechnology, (2012) 1-13.

DOI: 10.1016/j.tibtech.2012.06.004

Google Scholar

[17] S. Prabhu, E.K. Poulose, International Nano Letters, (2012) 32-42.

Google Scholar

[18] R. Roy, M.R. Hoover, A.S. Bhalla, T. Slawecki, S. Dey, W. Cao, J. Li, S. Bhaskar, Materials Research Innovations, 11 (2007) 3-4.

Google Scholar

[19] D.Y. Kwok, A.W. Neumann, Advances in Colloidal and Interface Science, 81 (1999) 167-249.

Google Scholar

[20] C.M. Agrawal, J.L. Ong, M.R. Appleford, G. Mani, Introduction to Biomaterials: Basic Theory with Engineering Applications, Cambridge University Press, United States of America, (2014).

DOI: 10.1017/cbo9781139035545

Google Scholar

[21] G. Bracco, B. Holst, Surface Science Techniques, Springer, United Kingdom (2013).

Google Scholar

[22] Malvern Instruments, Malvern Instruments2012, pp.1-14.

Google Scholar

[23] nanoComposix, nanoComposix2012.

Google Scholar

[24] Z. Chen, L. Gao, Materials Research Bulletin, 42 (2007) 1657-1661.

Google Scholar

[25] D.D. EvanoffJr., G. Chumanov, ChemPhysChem Minireviews, 6 (2005) 1221-1231.

Google Scholar

[26] J.A. Scholl, A.L. Koh, J.A. Dionne, Nature Drug Discovery, 483 (2012) 421-428.

Google Scholar

[27] U. Kreibig, L. Genzel, Surface Science 156, (1985) 678-700.

Google Scholar

[28] J.Z. Zhang, Optical Properties and Spectroscopy of Nanomaterials, World Scientific Publishing Co, United States of America, (2009).

Google Scholar

[29] H.H. Gerets, E. Hanon, M. Cornet, S. Dhalluin, O. Depelchin, M. Canning, Toxicology in vitro: an international journal published in association with BIBRA, 23 (2009) 319-332.

DOI: 10.1016/j.tiv.2008.11.012

Google Scholar

[30] W.G. Schoonen, J.A. d. Roos, W.M. Westerink, E. Debiton, Toxicology in vitro: an international journal published in association with BIBRA, 19 (2005) 491-503.

Google Scholar