A New Method for Synthesis of FeMnO3 Ceramics and its Phase Transformation

Article Preview

Abstract:

FeMnO3 powders were synthesized through a modified polyacrylamide gel route. The gel and the heat treated final powders have been characterized by X-ray diffractometry (XRD), differential scanning calorimetry and thermogravimetric analysis (TG/DSC) and field-emission scanning electron microscopy (SEM). Phase transformation sequence of dry gel during heating is (Mn+3,Fe+3)2O3→(α-Mn2O3)·(α-Fe2O3)→FeMnO3. The thermal expansion properties of as-prepared sample were determined. From 100 to 700 °C, the average coefficient of expansion is 9.0139×10-6 /K. The experimental results demonstrates that the FeMnO3 sample exhibit a ferromagnetic transitions with TN ≈ 40 K.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

122-131

Citation:

Online since:

December 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Seifu, A. Kebede, F.W. Oliver, E. Hoffman, E. Hammond, C. Wynter, A. Aning, L. Takacs, I.L. Siu, J.C. Walker, G. Tessema, M.S. Seehra, Evidence of ferrimagnetic ordering in FeMnO3 produced by mechanical alloying, J. Magn. Magn. Mater. 212 (2000).

DOI: 10.1016/s0304-8853(99)00787-8

Google Scholar

[2] P.A. Montano, Technological applications of mössbauer spectroscopy, Hyperfine Interactions, 27 (1986) 147-159.

DOI: 10.1007/bf02354751

Google Scholar

[3] I.R. Leith, M.G. Howden, Temperature-programmed reduction of mixed iron-manganese oxide catalysts in hydrogen and carbon monoxide, Appl. Catal. 37 (1988) 75-92.

DOI: 10.1016/s0166-9834(00)80752-6

Google Scholar

[4] K. Ehrensberger, A. Frei, P. Kuhn, H.R. Oswald, P. Hug, Comparative experimental investigations of the water-splitting reaction with iron oxide Fe1−yO and iron manganese oxides (Fe1−xMnx)1−yO, Solid State Ionics, 78 (1995) 151-160.

DOI: 10.1016/0167-2738(95)00019-3

Google Scholar

[5] H. Le Roux, A Mossbauer study of paramagnetic and magnetic components in an uncalcined iron manganese oxide powder, J. Phys.: Condens. Matter 2 (1990) 3391.

DOI: 10.1088/0953-8984/2/14/023

Google Scholar

[6] C.A. Goodwin, H.K. Bowen, W.D. Kingery, Phase Separation in the System (Fe, Mn)O, J. Amer. Ceram. Soc. 58 (1975) 317-320.

Google Scholar

[7] P. Franke, R. Dieckmann. Defect structure and transport properties of mixed iron-manganese oxides, Solid State Ionics, 32/33 (1989) 817-823.

DOI: 10.1016/0167-2738(89)90363-9

Google Scholar

[8] B. Kolk, A. Albers, G.R. Hearue, H. Le Roux. Evidence of a new structural phase of manganese-iron oxide, Hyperfine Interactions, 42 (1988) 1051-1054.

DOI: 10.1007/bf02395571

Google Scholar

[9] H. Hayashi , M. Watanabe, H. Inaba, Measurement of thermal expansion coefficient of LaCrO3, Thermochim Acta, 359 (2000) 77-85.

DOI: 10.1016/s0040-6031(00)00507-4

Google Scholar

[10] O. García-Moreno, A. Borrell, B. Bittmann, A. Fernández, R. Torrecillas, Alumina reinforced eucryptite ceramics: very low thermal expansion material with improved mechanical properties, J. Eur. Ceram. Soc. 31 (2011) 1641-1648.

DOI: 10.1016/j.jeurceramsoc.2011.03.033

Google Scholar

[11] I.D. Lick, D.B. Soria, Synthesis of MnFeO3 from the oxidative thermal decomposition of Mn[Fe(CN)5NO]·2H2O, J. Arge. Chem. Soc. 97 (2009) 102-108.

Google Scholar

[12] H. L. Roux, A mössbauer study of paramagnetic and magnetic components in an uncalcined iron manganese oxide powder, J. Phys.: Condens. Matter 2 (1990) 3391-3398.

DOI: 10.1088/0953-8984/2/14/023

Google Scholar

[13] S.B. He, S.F. Wang, Q. P. Ding, X. D. Yuan, W.G. Zheng, X. Xiang, Z. J. Li, X. T. Zu, Role of chelating agent in chemical and fluorescent properties of SnO2 nanoparticles, Chin. Phys. B 22 (2013) 058102-1-4.

DOI: 10.1088/1674-1056/22/5/058102

Google Scholar

[14] S. F. Wang, X. Xiang, G.A. Sun, X.L. Gao, B. Chen, Q.P. Ding, Z.J. Li, C.F. Zhang, X.T. Zu, Role of pH, organic additive, and chelating agent in gel synthesis and fluorescent properties of porous monolithic alumina, J. Phys. Chem. C 117 (2013).

DOI: 10.1021/jp311055b

Google Scholar

[15] M.F. Zhang, J.M. Liu, Z.G. Liu, Microstructural characterization of nanosized YMnO3 powders: the size effect, Appl. Phys. A 79 (2004) 1753–1756.

DOI: 10.1007/s00339-004-2901-x

Google Scholar

[16] S. F. Wang, G. Z. Sun, L. M. Fang, L. Lei, X. Xiang, X. T. Zu, A comparative study of ZnAl2O4 nanoparticles synthesized from different aluminum salts for use as fluorescence materials, Sci. Rep-UK 5 (2015) 12849.

DOI: 10.1038/srep12849

Google Scholar

[17] W.C. Wang, S. Li, Y.Y. Wen, M.C. Gong, L. Zhang, Y.L. Yao, Y.Q. Chen, Synthesis and characterization of TiO2/YFeO3 and its photocatalytic oxidation of gaseous benzene, Acta Phys. -Chim. Sin. 24 (2008) 1761-1766.

DOI: 10.1016/s1872-1508(08)60072-8

Google Scholar

[18] Y. Zhang, H. Liang, C. Y. Zhao, Yuan Liu, Macroporous alumina monoliths prepared by filling polymer foams with alumina hydrosols, J Mater Sci (2009) 44: 931–938.

DOI: 10.1007/s10853-008-3189-6

Google Scholar

[19] T. Xian, H. Yang, X. Shen, J. L. Jiang, Z. Q. Wei, W. J. Feng, Preparation of high-quality BiFeO3 nanopowders via a polyacrylamide gel route, J. Alloy. Comp. 480 (2009) 889-892.

DOI: 10.1016/j.jallcom.2009.02.068

Google Scholar

[20] S.Q. Wu, Y.Y. Liu, L.N. He, F.P. Wang, Preparation of β-spodumene-based glass–ceramic powders by polyacrylamide gel process, Mater. Lett. 58 (2004) 2772-2775.

DOI: 10.1016/j.matlet.2004.04.017

Google Scholar