Nano-Structural Alteration of Pyrophyllite by Grinding Revealed by X-Ray Diffraction and High-Resolution Transmission Electron Microscopy

Article Preview

Abstract:

The mechanical destruction of the pyrophyllite structure and final ground products upon grinding with a laboratory planetary ball mill were investigated using high-resolution transmission electron microscope (HRTEM) coupled with selected area electron diffraction (SAED), field emission scanning electron microscope (SEM) and X-ray diffraction (XRD). Grinding produced a profound structural alteration, resulting in increasing amorphization. Increasing the intensity of grinding resulted in acceleration of the mechanically induced amorphization of the pyrophyllite structure. The pyrophyllite phase was transformed into its anhydride phase during the process of the prolonged grinding. Increasing the grinding intensity resulted in faster destruction of the pyrophyllite structure. The plate-like microcrystal exhibited the 2M-pyrophyllite crystal structure. The pyrophyllite anhydride phase was existed after grinding.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

72-78

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.G. Garcia, M.T.R. Abrio, M.G. Rodrigues, Effects of dry grinding on two kaolins of different degrees of crystallinity, Clay Miner. 26 (6) (1991) 549-565.

DOI: 10.1180/claymin.1991.026.4.09

Google Scholar

[2] A. Bentayeb, M. Amouric, J. Olives, A. Dekayir, A. Nadiri, XRD and HRTEM characterization of pyrophyllite from Morocco and its possible applications, Appl. Clay Sci. 22 (2003) 211 – 221.

DOI: 10.1016/s0169-1317(03)00066-8

Google Scholar

[3] P. J. Sanchez-Soto, M.C.J. Haro, L.A. Perez-Maqueda, I. Varona, J. L. Perez-Rodriguez, Effects of dry grinding on the tructural changes of kaolinite powders, J. Am. Ceram. Soc. 83 (9) (2000) 1649-1657.

DOI: 10.1111/j.1151-2916.2000.tb01444.x

Google Scholar

[4] E.F. Aglietti, The effect of dry grinding on the structure of talc, Appl. Clay Sci. 9 (2) (1994) 139-147.

DOI: 10.1016/0169-1317(94)90033-7

Google Scholar

[5] P.J. Sanchez-Soto, A. Wiewiora, M.A. Aviles, A. Justo, L.A. Perez-Maqueda, I. Varona, J.L. Perez-Rodriguez, P. Bylina, Talc from Puebla de Lillo, Spain. II. Effect of dry grinding on particle size and shape, Appl. Clay Sci. 12 (4) (1997) 297-312.

DOI: 10.1016/s0169-1317(97)00013-6

Google Scholar

[6] J. Hrachova, P. Komadel, V.S. Fajnor, The effect of mechanical treatment on the structure of montmorillonite, Mater. Lett. 61(16) (2007) 3361-3365.

DOI: 10.1016/j.matlet.2006.11.063

Google Scholar

[7] J.L. Perez-Rodriguez, M.S.D. Villar, P.J. Sanchez-Soto, Effects of dry grinding on pyrophyllite, Clay Miner. 23 (4) (1988) 399–410.

DOI: 10.1180/claymin.1988.023.4.07

Google Scholar

[8] P.J. Sanchez-Soto, A. Justo, J.L. Perez-Rodriguez, Grinding effect on kaolinite–pyrophyllite-illite natural mixtures and its influence on mullite formation, J. Mater. Sci. 29(5) (1994) 1276-1283.

DOI: 10.1007/bf00975075

Google Scholar

[9] M. Erdemoglu, M. Sarikaya, The effect of grinding on pyrophyllite flotation, Miner. Eng. 15 (10) (2002) 723-725.

Google Scholar

[10] A. Wiewióra, P.J. Sánchez-Soto, M.A. Avilés, A. Justo, J.L. Pérez-Rodríguez, Effect of dry grinding and leaching on polytypic structure of pyrophyllite, Appl. Clay Sci. 8 (4) (1993) 261-282.

DOI: 10.1016/0169-1317(93)90008-o

Google Scholar

[11] S. Mohammadnejad, J.L. Provis, J.S.J. van Deventer, Effects of grinding on the preg-robbing behaviour of pyrophyllite, Hydrometallurgy 146 (2014) 154-163.

DOI: 10.1016/j.hydromet.2014.04.007

Google Scholar

[12] M. Hasegawa, M. Kimata, M. Shimane, T. Shoji, M. Tsuruta, The effect of liquid additives on dry ultrafine grinding of quartz, Powder Technol. 114 (2001) 145–151.

DOI: 10.1016/s0032-5910(00)00290-4

Google Scholar

[13] J.L. Perez-Rodriguez, A. Wiewiora,V. Ramirez-Valle, A. Dura´n, L.A., Preparation of nano-pyrophyllite: Comparative study of sonication and grinding, J. Phys. Chem. Solids 68 (2007) 1225–1229.

DOI: 10.1016/j.jpcs.2007.01.007

Google Scholar

[14] S. Milosevic, M. Tomasevic-Canovic, R. Dimitrijevic, M. Petrov, M. Djuricic, Amorphization of aluminosilicate minerals during micronization process, Am. Ceram. Soc. Bull. 71(5) (1997) 771-775.

Google Scholar

[15] J. Temuujin, K. Okada, T.S. Jadambaa, K.J.D. MacKenzie, J. Amarsanaa, Effect of grinding on the leaching behaviour of pyrophyllite, J. Eur. Ceram. Soc. 23 (2003) 1277–1282.

DOI: 10.1016/s0955-2219(02)00297-2

Google Scholar

[16] J. Hrachova, J. Madejova, P. Billik, P. Komadel, V.S. Fajnor, Dry grinding of Ca and octadecyltrimethylammonium montmorillonite, J. Colloid Interf. Sci. 316(2) (2007) 589-595.

DOI: 10.1016/j.jcis.2007.07.085

Google Scholar

[17] J. Yan, J. Zhang, X.C. Hu, Determination of microstructure and defect structure in pyrophyllite by high-resolution transmission electron microscopy, Acta Mineral. Sinica. 32(1) (2012) 65-73.

Google Scholar

[18] M.A. Kojdecki, J. Bastida, P. Pardo, P. Amoros, Crystalline microstructure of sepiolite influenced by grinding, J. Appl. Crystallogr. 38 (6) (2005) 888-899.

DOI: 10.1107/s0021889805026476

Google Scholar

[19] G.W. Brindley, R. Wardle, Monoclinic and triclinic forms of pyrophyllite and pyrophyllite anhydride, Am. Mineral. 55(8) (1970) 1259-1263.

Google Scholar

[20] C. Volzone, E.F. Aglietti, A.N. Scian, J.M. Porto López, Effect of induced structural modifications on the physicochemical behavior of bentonite, Appl. Clay Sci. 2(2) (1987) 97-104.

DOI: 10.1016/0169-1317(87)90001-9

Google Scholar