Effect of Solution on One-Step Hydrothermal Growth of ZnO Nanorod Arrays and its Application to Ultraviolet Photodetectors

Article Preview

Abstract:

In this work, we report the characteristics of ZnO nanorod (NR) arrays grown on bare Si (100) substrates by a one-step hydrothermal method, using equimolar aqueous solutions of zinc nitrate hexahydrate (Zn[NO3]2·6H2O) and hexamethy lenetetramine (C6H12N4) with concentrations of 0.01, 0.03, 0.05, and 0.10 M. For the top two precursor concentrations, 0.05 and 0.10 M, the fabricated ZnO NRs can densely distribute on the substrates; they have average diameters of 192 and 416 nm, and average lengths of 3.20 and 4.48 µm. Metal-semiconductor-metal (MSM) ultraviolet (UV) photodetectors (PDs) with interdigitated Au electrodes plated on top of the ZnO NR arrays were also evaluated. Under UV illumination of 370 nm and bias voltage of 3 V, the MSM UV PD based on ZnO NR arrays fabricated with the precursor concentration of 0.05 M has the largest photo-to-dark current contrast ratio of 47.28 among our samples, and its responsivity reaches 1.06´10-1 A/W, where the corresponding UV-to-Vis rejection ratio is 8.69.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

46-57

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Cheng, G. Cheng, S. Wang, L. Li, S. Dai, X. Zhang, B. Zou, Z. Du, Surface states dominative Au Schottky contact on vertical aligned ZnO nanorod arrays synthesized by low-temperature growth, New J. Phys. 9 (2007) 214.

DOI: 10.1088/1367-2630/9/7/214

Google Scholar

[2] P. W. Sadik, S. J. Pearton, D. P. Norton, E. Lambers, F. Ren, Functionalizing Zn- and O-Terminated ZnO with Thiols, J. Appl. Phys. 101 (2007) 104514.

DOI: 10.1063/1.2736893

Google Scholar

[3] T. P. Chen, S. J. Young, S. J. Chang, C. H. Hsiao, C. S. Huang, Field-Emission and Photoelectrical Characteristics of ZnO Nanorods Photodetectors Prepared on Flexible Substrate, J. Electrochem. Soc. 159 (2012) J153.

DOI: 10.1149/2.jes037205

Google Scholar

[4] H. Zhang, D. Yang, X. Ma, D. Que, Synthesis and Field Emission Characteristics of Bilayered ZnO Nanorod Array Prepared by Chemical Reaction, J. Phys. Chem. B 109 (2005) 17055-17059.

DOI: 10.1021/jp051204a

Google Scholar

[5] Z. L. Wang, J. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Science 312 (2006) 242.

DOI: 10.1126/science.1124005

Google Scholar

[6] X. Wang, Aubry-Mather sets for sublinear asymmetric Duffing equations, Nano Energy 1 (2012) 13.

DOI: 10.1360/012011-328

Google Scholar

[7] N. Jalali, P. Woolliams, M. Stewart, P. M. Weaver, M. G. Cain, S. Dunn, Joe Briscoe, Improved performance of p–n junction-based ZnO nanogenerators through CuSCN-passivation of ZnO nanorods, J. Mater. Chem. A 2 (2014) 10945-10951.

DOI: 10.1039/c4ta01714e

Google Scholar

[8] Y. H. Ko, G. Nagaraju, S. H. Lee, J. S. Yu, PDMS-based Triboelectric and Transparent Nanogenerators with ZnO Nanorod Arrays, ACS Appl. Mater. Interfaces 6 (2014) 6631–6637.

DOI: 10.1021/am5018072

Google Scholar

[9] N. Liu, G. Fang, W. Zeng, H. Zhou, F. Cheng, Q. Zheng, L. Yuan, X. Zou, X. Zhao, Direct Growth of Lateral ZnO Nanorod UV Photodetectors with Schottky Contact by a Single-Step Hydrothermal Reaction, ACS Appl. Mater. Interfaces 2 (2010) (1973).

DOI: 10.1021/am100277q

Google Scholar

[10] L. Wang, D. Zhao, Z. Su, F. Fang, B. Li, Z. Zhang, D. Shen, X. Wang, High spectrum selectivity organic/inorganic hybrid visible-blind ultraviolet photodetector based on ZnO nanorods, Org. Electron. 11 (2010) 1318.

DOI: 10.1016/j.orgel.2010.04.010

Google Scholar

[11] F. Yi, Q. Liao, X. Yan, Z. Bai, Z. Wang, X. Chen, Q. Zhang, Y. Huang, Y. Zhang, Simple fabrication of a ZnO nanorod array UV detector with a high performance, Physica E 61 (2014) 180-184.

DOI: 10.1016/j.physe.2014.03.025

Google Scholar

[12] H. K. Lee, M. S. Kim, J. S. Yu, Light-Extraction Enhancement of Large-Area GaN-Based LEDs With Electrochemically Grown ZnO Nanorod Arrays, IEEE Photonic. Technol. Lett. 23 (2011) 1204.

DOI: 10.1109/lpt.2011.2158092

Google Scholar

[13] H. Long, S. Li, X. Mo, H. Wang, H. Huang, Z. Chen, Y. Liu, G. Fang, Electroluminescence from ZnO-nanorod-based double heterostructured light-emitting diodes, Appl. Phys. Lett. 103 (2013) 123504.

DOI: 10.1063/1.4821346

Google Scholar

[14] S. Park, H. Kim, C. Jin, C. Lee, Enhanced Gas Sensing Properties of Multiple Networked In2O3-Core/ZnO-Shell Nanorod Sensors, J. Nanosci. Nanotechnol. 13 (2013) 3427.

DOI: 10.1166/jnn.2013.7231

Google Scholar

[15] J. Chen, X. Yan, Q. Xue, ZnO Nanorod Arrays Applied as Broad-Spectrum Sensors for Detecting Various Volatile Organic Solvents, Nanosci. Nanotechnol. Lett. 4 (2012) 1181.

DOI: 10.1166/nnl.2012.1453

Google Scholar

[16] F. Ahmed, N. Arshi, M.S. Anwar, R. Danish, B. H. Koo, Mn-doped ZnO nanorod gas sensor for oxygen detection, Curr. Appl. Phys. 13 (2013) S64-S68.

DOI: 10.1016/j.cap.2012.12.029

Google Scholar

[17] T. Rakshit, S. Mandal, P. Mishra, A Dhar, I. Manna, S. K. Ray, Optical and Bio-Sensing Characteristics of ZnO Nanotubes Grown by Hydrothermal Method, J. Nanosci. Nanotechnol. 12 (2012) 308.

DOI: 10.1166/jnn.2012.5134

Google Scholar

[18] S. N. Sarangi, S. Nozaki, S. N. Sahu, ZnO Nanorod-Based Non-Enzymatic Optical Glucose Biosensor, J. of Biomed. Nanotech. 11 (2015) 988-996.

DOI: 10.1166/jbn.2015.2048

Google Scholar

[19] J. G. Lee, Y. C. Choi, D. K. Lee, K. S. Ahn, J. H. Kim, Photovoltaic Performance of Dye-Sensitized Solar Cell Low Temperature Growth of ZnO Nanorods Using Chemical Bath Deposition, J. Nanosci. Nanotechnol. 12 (2012) 3469.

DOI: 10.1166/jnn.2012.5568

Google Scholar

[20] R. Sharma, J. H. Kim, Y. B. Hahn, Solution-Processed Solid-State Solar Cells of ZnO/CuO Core/Shell Nanorods, Sci. Adv. Mater. 4 (2012) 978.

DOI: 10.1166/sam.2012.1368

Google Scholar

[21] S. Shoaee, J. Briscoe, J. R. Durrant, Steve Dunn, Acoustic enhancement of polymer/ZnO nanorod photovoltaic device performance, Advanced Mater. 26 (2014) 263-268.

DOI: 10.1002/adma.201303304

Google Scholar

[22] T. P. Chen, S. J. Young, S. J. Chang, C. H. Hsiao, Photoconductive Gain of Vertical ZnO Nanorods on Flexible Polyimide Substrate by Low-Temperature Process, IEEE Sens. J. 11 (2011) 3457.

DOI: 10.1109/jsen.2011.2160254

Google Scholar

[23] C. C. Su, J. L. Chen, Effects of geometric structure, orientation and size on structural stability and thermal behavior of zinc oxide nanowires, Mater. Res. Bull. 46 (2011) 1686-1691.

DOI: 10.1016/j.materresbull.2011.05.035

Google Scholar

[24] J. H. Lee, K. Y. Lee, B. Kumar, S. W. Kim, Synthesis of Ga-Doped ZnO Nanorods Using an Aqueous Solution Method for a Piezoelectric Nanogenerator, J. Nanosci. Nanotechnol. 12 (2012) 3430.

DOI: 10.1166/jnn.2012.5632

Google Scholar

[25] J. H. He, C. L. Hsin, J. Liu, L. J. , Z. L. Wang, Piezoelectric gated diode of a single ZnO nanowire, Adv Mater 19 (2007) 781-784.

DOI: 10.1002/adma.200601908

Google Scholar

[26] Q. Yu, C. Cao, ZnO Nanorod Arrays for Photoelectrochemical Cells, J. Nanosci. Nanotechnol. 12 (2012) 3984-3989.

DOI: 10.1166/jnn.2012.6197

Google Scholar

[27] S. R. A. Raza, Y. T. Lee, Y. G. Chang, P. J. Jeon, J. H. Kim, R. Ha, H. J. Choi, S. Im, Photoelectric probing of the interfacial trap density-of-states in ZnO nanowire field-effect transistors, Phys. Chem. Chem. Phys. 15 (2013) 2660-2664.

DOI: 10.1039/c3cp44027c

Google Scholar

[28] K. Ogata, K. Koike, S. Sasa, M. Inoue, M. Yano, Fabrication of ZnO nanorods on O-polar ZnO layers grown by molecular beam epitaxy and electrical characterization using conductive atomic force microscopy, Semicond. Sci. Technol. 24 (2009) 015006.

DOI: 10.1088/0268-1242/24/1/015006

Google Scholar

[29] M.S. Kim, G. Nam, J.Y. Leem, Photoluminescence Studies of ZnO Nanorods Grown by Plasma-Assisted Molecular Beam Epitaxy, J. Nanosci. Nanotechnol. 13 (2013) 3582.

DOI: 10.1166/jnn.2013.7320

Google Scholar

[30] Z. Y. Zheng, T. X. Chen, L. Cao, Y. Y. Han, F. Q. Xu, Structure and Optical Properties of ZnO Nanowire Arrays Grown by Plasma-assisted Molecular Beam Epitaxy, J. of Inorganic Mater. 27 (2012) 301-304.

DOI: 10.3724/sp.j.1077.2012.00301

Google Scholar

[31] B. Tang, H. Deng, Z.W. Shui, Q. Zhang, Synthesis and Optical Properties of Vertically Aligned ZnO Nanorods, J. Nanosci. Nanotechnol. 10 (2010) 1842.

DOI: 10.1166/jnn.2010.2113

Google Scholar

[32] K. Kitamura, T. Yatsui, M. Ohtsu, G. C. Yi, Fabrication of vertically aligned ultrafine ZnO nanorods using metal–organic vapor phase epitaxy with a two-temperature growth method, Nanotechno. 19 (2008) 175305.

DOI: 10.1088/0957-4484/19/17/175305

Google Scholar

[33] D. Bekermann, A. Gasparotto, D, Barreca, L. Bovo, A. Devi, R. A. Fischer, O. Lebedev, C. Maccato, E. Tondello, G. Van Tendeloo, Highly Oriented ZnO Nanorod Arrays by a Novel Plasma Chemical Vapor Deposition Process, Cryst. Growth Des. 10 (2010).

DOI: 10.1021/cg1002012

Google Scholar

[34] J. Rodrigues, M. Peres, M. R. N. Soares, A. J. S. Fernandes, N. Ferreira, M. Ferro, A.J. Neves, T. Monteiro, F. Costa, ZnO Nano/Microstructures Grown by Laser Assisted Flow Deposition, J. Nano Res. 18-19 (2012) 129.

DOI: 10.4028/www.scientific.net/jnanor.18-19.129

Google Scholar

[35] C. F. Lin, M. S. Lin, C. C. Chen, P. H. Tsai, F. H. Wang, Characterization of the well-aligned ZnO nanorod structure on a pulsed laser deposited AlZnO seed layer, Surface and Coatings Technol. 231 (2013) 161-165.

DOI: 10.1016/j.surfcoat.2012.07.020

Google Scholar

[36] S. Amizam, M. H. Mamat, Z. Khusaimi, H. A. Rafaie, M. Z. Sahdan, S. Abdullah, M. Rusop, Synthesis of ZnO nanorods on porous silicon substrate using sol–gel method, Mater. Res. Innov. 13 (2009) 189.

DOI: 10.1179/143307509x437581

Google Scholar

[37] K. Prabakar, Heeje. Kim, Growth control of ZnO nanorod density by sol-gel method, Thin Solid Films 518 (2010) 136-138.

DOI: 10.1016/j.tsf.2010.03.103

Google Scholar

[38] C. H. Su, C. M. Huang, Effect of Zinc Oxide Films on Si Substrates Growth by Microwave Plasma Jet Sintering System, J. Nano Res. 22 (2013) 1.

DOI: 10.4028/www.scientific.net/jnanor.22.1

Google Scholar

[39] S. Promnimit, S. Baruah, U. Lamdu, J. Dutta, Hydrothermal Growth of ZnO Hexagonal Nanocrystals: Effect of Growth Conditions, J. Nano Res. 21 (2012) 57.

DOI: 10.4028/www.scientific.net/jnanor.21.57

Google Scholar

[40] A. N. Afaah, A. Aadila, N. A. M. Asib, R. Mohamed, M. H. Mamat, M. Rusop, Z. Khusaimi, The Growth of ZnO Nanoparticles by Solution-Immersion Method on Various Types of Seeded Template, J. Nano Res. 26 (2013) 39.

DOI: 10.4028/www.scientific.net/jnanor.26.39

Google Scholar

[41] S. Xu, C. Lao, B. Weintraub, Z. L. Wang, Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces, J. Mater. Res. 23 (2008) (2072).

DOI: 10.1557/jmr.2008.0274

Google Scholar

[42] H. Huang, G. Fang, X. Mo, L. Yuan, H. Zhou, M. Wang, H. Xiao, X. Zhao, Zero-biased near-ultraviolet and visible photodetector based on ZnO nanorods/n-Si heterojunction, Appl. Phys. Lett. 94 (2009) 063512.

DOI: 10.1063/1.3082096

Google Scholar

[43] S. Panigrahia, D. Basak, Core–shell TiO2/ ZnO nanorods for efficient ultraviolet photodetection, Nanoscale 3 (2011) 2336.

DOI: 10.1039/c1nr10064e

Google Scholar

[44] T. P. Chen, S. J. Young, S. J. Chang, C. H. Hsiao, Y. J. Hsu, Bending effects of ZnO nanorod metal–semiconductor–metal photodetectors on flexible polyimide substrate, Nanoscale Res. Lett. 7 (2012) 214.

DOI: 10.1186/1556-276x-7-214

Google Scholar

[45] R. C. Wang, H.Y. Lin, S. J. Chen, Y. F. Lai, M. R. S. Huang, Boundary layer-assisted chemical bath deposition of well-aligned ZnO rods on Si by a one-step method, Appl. Phys. A 96 (2009) 775.

DOI: 10.1007/s00339-009-5271-6

Google Scholar

[46] W. D. Yu, X. M. Li, X.D. Gao, Self-catalytic synthesis and photoluminescence of ZnO nanostructures on ZnO nanocrystal substrates, Appl. Phys. Lett. 84 (2004) 2658.

DOI: 10.1063/1.1695097

Google Scholar

[47] A. F. Aktaruzzaman, G. L. Sharma, L. K. Malhotra, optical and annealing characteristics of ZnO: Al films prepared by spray pyrolysis, Thin Solid Films 198 (1991) 67.

DOI: 10.1016/0040-6090(91)90325-r

Google Scholar

[48] W. R. Liu, Y. H. Li, W. F. Hsieh, C. H. Hsu, W.C. Lee, M. Hong, J. Kwo, Correlation between crystal structure and photoluminescence for epitaxial ZnO on Si (1 1 1) using a γ-Al2O3 buffer layer J. Phys. D: Appl. Phys. 41 (2008) 065105.

DOI: 10.1088/0022-3727/41/6/065105

Google Scholar

[49] Y. C. Ou, Z. Y. Wu, F. R. Chen, J. J. Kai, W. B. Jian, Characterization of Room-Temperature Ferromagnetic Zn1-xCoxO Nanowires—from Nanowires. In: Prete, P. (ed. ), InTech, Croatia 2010, pp.153-170.

DOI: 10.5772/39509

Google Scholar