[1]
K. Cheng, G. Cheng, S. Wang, L. Li, S. Dai, X. Zhang, B. Zou, Z. Du, Surface states dominative Au Schottky contact on vertical aligned ZnO nanorod arrays synthesized by low-temperature growth, New J. Phys. 9 (2007) 214.
DOI: 10.1088/1367-2630/9/7/214
Google Scholar
[2]
P. W. Sadik, S. J. Pearton, D. P. Norton, E. Lambers, F. Ren, Functionalizing Zn- and O-Terminated ZnO with Thiols, J. Appl. Phys. 101 (2007) 104514.
DOI: 10.1063/1.2736893
Google Scholar
[3]
T. P. Chen, S. J. Young, S. J. Chang, C. H. Hsiao, C. S. Huang, Field-Emission and Photoelectrical Characteristics of ZnO Nanorods Photodetectors Prepared on Flexible Substrate, J. Electrochem. Soc. 159 (2012) J153.
DOI: 10.1149/2.jes037205
Google Scholar
[4]
H. Zhang, D. Yang, X. Ma, D. Que, Synthesis and Field Emission Characteristics of Bilayered ZnO Nanorod Array Prepared by Chemical Reaction, J. Phys. Chem. B 109 (2005) 17055-17059.
DOI: 10.1021/jp051204a
Google Scholar
[5]
Z. L. Wang, J. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Science 312 (2006) 242.
DOI: 10.1126/science.1124005
Google Scholar
[6]
X. Wang, Aubry-Mather sets for sublinear asymmetric Duffing equations, Nano Energy 1 (2012) 13.
DOI: 10.1360/012011-328
Google Scholar
[7]
N. Jalali, P. Woolliams, M. Stewart, P. M. Weaver, M. G. Cain, S. Dunn, Joe Briscoe, Improved performance of p–n junction-based ZnO nanogenerators through CuSCN-passivation of ZnO nanorods, J. Mater. Chem. A 2 (2014) 10945-10951.
DOI: 10.1039/c4ta01714e
Google Scholar
[8]
Y. H. Ko, G. Nagaraju, S. H. Lee, J. S. Yu, PDMS-based Triboelectric and Transparent Nanogenerators with ZnO Nanorod Arrays, ACS Appl. Mater. Interfaces 6 (2014) 6631–6637.
DOI: 10.1021/am5018072
Google Scholar
[9]
N. Liu, G. Fang, W. Zeng, H. Zhou, F. Cheng, Q. Zheng, L. Yuan, X. Zou, X. Zhao, Direct Growth of Lateral ZnO Nanorod UV Photodetectors with Schottky Contact by a Single-Step Hydrothermal Reaction, ACS Appl. Mater. Interfaces 2 (2010) (1973).
DOI: 10.1021/am100277q
Google Scholar
[10]
L. Wang, D. Zhao, Z. Su, F. Fang, B. Li, Z. Zhang, D. Shen, X. Wang, High spectrum selectivity organic/inorganic hybrid visible-blind ultraviolet photodetector based on ZnO nanorods, Org. Electron. 11 (2010) 1318.
DOI: 10.1016/j.orgel.2010.04.010
Google Scholar
[11]
F. Yi, Q. Liao, X. Yan, Z. Bai, Z. Wang, X. Chen, Q. Zhang, Y. Huang, Y. Zhang, Simple fabrication of a ZnO nanorod array UV detector with a high performance, Physica E 61 (2014) 180-184.
DOI: 10.1016/j.physe.2014.03.025
Google Scholar
[12]
H. K. Lee, M. S. Kim, J. S. Yu, Light-Extraction Enhancement of Large-Area GaN-Based LEDs With Electrochemically Grown ZnO Nanorod Arrays, IEEE Photonic. Technol. Lett. 23 (2011) 1204.
DOI: 10.1109/lpt.2011.2158092
Google Scholar
[13]
H. Long, S. Li, X. Mo, H. Wang, H. Huang, Z. Chen, Y. Liu, G. Fang, Electroluminescence from ZnO-nanorod-based double heterostructured light-emitting diodes, Appl. Phys. Lett. 103 (2013) 123504.
DOI: 10.1063/1.4821346
Google Scholar
[14]
S. Park, H. Kim, C. Jin, C. Lee, Enhanced Gas Sensing Properties of Multiple Networked In2O3-Core/ZnO-Shell Nanorod Sensors, J. Nanosci. Nanotechnol. 13 (2013) 3427.
DOI: 10.1166/jnn.2013.7231
Google Scholar
[15]
J. Chen, X. Yan, Q. Xue, ZnO Nanorod Arrays Applied as Broad-Spectrum Sensors for Detecting Various Volatile Organic Solvents, Nanosci. Nanotechnol. Lett. 4 (2012) 1181.
DOI: 10.1166/nnl.2012.1453
Google Scholar
[16]
F. Ahmed, N. Arshi, M.S. Anwar, R. Danish, B. H. Koo, Mn-doped ZnO nanorod gas sensor for oxygen detection, Curr. Appl. Phys. 13 (2013) S64-S68.
DOI: 10.1016/j.cap.2012.12.029
Google Scholar
[17]
T. Rakshit, S. Mandal, P. Mishra, A Dhar, I. Manna, S. K. Ray, Optical and Bio-Sensing Characteristics of ZnO Nanotubes Grown by Hydrothermal Method, J. Nanosci. Nanotechnol. 12 (2012) 308.
DOI: 10.1166/jnn.2012.5134
Google Scholar
[18]
S. N. Sarangi, S. Nozaki, S. N. Sahu, ZnO Nanorod-Based Non-Enzymatic Optical Glucose Biosensor, J. of Biomed. Nanotech. 11 (2015) 988-996.
DOI: 10.1166/jbn.2015.2048
Google Scholar
[19]
J. G. Lee, Y. C. Choi, D. K. Lee, K. S. Ahn, J. H. Kim, Photovoltaic Performance of Dye-Sensitized Solar Cell Low Temperature Growth of ZnO Nanorods Using Chemical Bath Deposition, J. Nanosci. Nanotechnol. 12 (2012) 3469.
DOI: 10.1166/jnn.2012.5568
Google Scholar
[20]
R. Sharma, J. H. Kim, Y. B. Hahn, Solution-Processed Solid-State Solar Cells of ZnO/CuO Core/Shell Nanorods, Sci. Adv. Mater. 4 (2012) 978.
DOI: 10.1166/sam.2012.1368
Google Scholar
[21]
S. Shoaee, J. Briscoe, J. R. Durrant, Steve Dunn, Acoustic enhancement of polymer/ZnO nanorod photovoltaic device performance, Advanced Mater. 26 (2014) 263-268.
DOI: 10.1002/adma.201303304
Google Scholar
[22]
T. P. Chen, S. J. Young, S. J. Chang, C. H. Hsiao, Photoconductive Gain of Vertical ZnO Nanorods on Flexible Polyimide Substrate by Low-Temperature Process, IEEE Sens. J. 11 (2011) 3457.
DOI: 10.1109/jsen.2011.2160254
Google Scholar
[23]
C. C. Su, J. L. Chen, Effects of geometric structure, orientation and size on structural stability and thermal behavior of zinc oxide nanowires, Mater. Res. Bull. 46 (2011) 1686-1691.
DOI: 10.1016/j.materresbull.2011.05.035
Google Scholar
[24]
J. H. Lee, K. Y. Lee, B. Kumar, S. W. Kim, Synthesis of Ga-Doped ZnO Nanorods Using an Aqueous Solution Method for a Piezoelectric Nanogenerator, J. Nanosci. Nanotechnol. 12 (2012) 3430.
DOI: 10.1166/jnn.2012.5632
Google Scholar
[25]
J. H. He, C. L. Hsin, J. Liu, L. J. , Z. L. Wang, Piezoelectric gated diode of a single ZnO nanowire, Adv Mater 19 (2007) 781-784.
DOI: 10.1002/adma.200601908
Google Scholar
[26]
Q. Yu, C. Cao, ZnO Nanorod Arrays for Photoelectrochemical Cells, J. Nanosci. Nanotechnol. 12 (2012) 3984-3989.
DOI: 10.1166/jnn.2012.6197
Google Scholar
[27]
S. R. A. Raza, Y. T. Lee, Y. G. Chang, P. J. Jeon, J. H. Kim, R. Ha, H. J. Choi, S. Im, Photoelectric probing of the interfacial trap density-of-states in ZnO nanowire field-effect transistors, Phys. Chem. Chem. Phys. 15 (2013) 2660-2664.
DOI: 10.1039/c3cp44027c
Google Scholar
[28]
K. Ogata, K. Koike, S. Sasa, M. Inoue, M. Yano, Fabrication of ZnO nanorods on O-polar ZnO layers grown by molecular beam epitaxy and electrical characterization using conductive atomic force microscopy, Semicond. Sci. Technol. 24 (2009) 015006.
DOI: 10.1088/0268-1242/24/1/015006
Google Scholar
[29]
M.S. Kim, G. Nam, J.Y. Leem, Photoluminescence Studies of ZnO Nanorods Grown by Plasma-Assisted Molecular Beam Epitaxy, J. Nanosci. Nanotechnol. 13 (2013) 3582.
DOI: 10.1166/jnn.2013.7320
Google Scholar
[30]
Z. Y. Zheng, T. X. Chen, L. Cao, Y. Y. Han, F. Q. Xu, Structure and Optical Properties of ZnO Nanowire Arrays Grown by Plasma-assisted Molecular Beam Epitaxy, J. of Inorganic Mater. 27 (2012) 301-304.
DOI: 10.3724/sp.j.1077.2012.00301
Google Scholar
[31]
B. Tang, H. Deng, Z.W. Shui, Q. Zhang, Synthesis and Optical Properties of Vertically Aligned ZnO Nanorods, J. Nanosci. Nanotechnol. 10 (2010) 1842.
DOI: 10.1166/jnn.2010.2113
Google Scholar
[32]
K. Kitamura, T. Yatsui, M. Ohtsu, G. C. Yi, Fabrication of vertically aligned ultrafine ZnO nanorods using metal–organic vapor phase epitaxy with a two-temperature growth method, Nanotechno. 19 (2008) 175305.
DOI: 10.1088/0957-4484/19/17/175305
Google Scholar
[33]
D. Bekermann, A. Gasparotto, D, Barreca, L. Bovo, A. Devi, R. A. Fischer, O. Lebedev, C. Maccato, E. Tondello, G. Van Tendeloo, Highly Oriented ZnO Nanorod Arrays by a Novel Plasma Chemical Vapor Deposition Process, Cryst. Growth Des. 10 (2010).
DOI: 10.1021/cg1002012
Google Scholar
[34]
J. Rodrigues, M. Peres, M. R. N. Soares, A. J. S. Fernandes, N. Ferreira, M. Ferro, A.J. Neves, T. Monteiro, F. Costa, ZnO Nano/Microstructures Grown by Laser Assisted Flow Deposition, J. Nano Res. 18-19 (2012) 129.
DOI: 10.4028/www.scientific.net/jnanor.18-19.129
Google Scholar
[35]
C. F. Lin, M. S. Lin, C. C. Chen, P. H. Tsai, F. H. Wang, Characterization of the well-aligned ZnO nanorod structure on a pulsed laser deposited AlZnO seed layer, Surface and Coatings Technol. 231 (2013) 161-165.
DOI: 10.1016/j.surfcoat.2012.07.020
Google Scholar
[36]
S. Amizam, M. H. Mamat, Z. Khusaimi, H. A. Rafaie, M. Z. Sahdan, S. Abdullah, M. Rusop, Synthesis of ZnO nanorods on porous silicon substrate using sol–gel method, Mater. Res. Innov. 13 (2009) 189.
DOI: 10.1179/143307509x437581
Google Scholar
[37]
K. Prabakar, Heeje. Kim, Growth control of ZnO nanorod density by sol-gel method, Thin Solid Films 518 (2010) 136-138.
DOI: 10.1016/j.tsf.2010.03.103
Google Scholar
[38]
C. H. Su, C. M. Huang, Effect of Zinc Oxide Films on Si Substrates Growth by Microwave Plasma Jet Sintering System, J. Nano Res. 22 (2013) 1.
DOI: 10.4028/www.scientific.net/jnanor.22.1
Google Scholar
[39]
S. Promnimit, S. Baruah, U. Lamdu, J. Dutta, Hydrothermal Growth of ZnO Hexagonal Nanocrystals: Effect of Growth Conditions, J. Nano Res. 21 (2012) 57.
DOI: 10.4028/www.scientific.net/jnanor.21.57
Google Scholar
[40]
A. N. Afaah, A. Aadila, N. A. M. Asib, R. Mohamed, M. H. Mamat, M. Rusop, Z. Khusaimi, The Growth of ZnO Nanoparticles by Solution-Immersion Method on Various Types of Seeded Template, J. Nano Res. 26 (2013) 39.
DOI: 10.4028/www.scientific.net/jnanor.26.39
Google Scholar
[41]
S. Xu, C. Lao, B. Weintraub, Z. L. Wang, Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces, J. Mater. Res. 23 (2008) (2072).
DOI: 10.1557/jmr.2008.0274
Google Scholar
[42]
H. Huang, G. Fang, X. Mo, L. Yuan, H. Zhou, M. Wang, H. Xiao, X. Zhao, Zero-biased near-ultraviolet and visible photodetector based on ZnO nanorods/n-Si heterojunction, Appl. Phys. Lett. 94 (2009) 063512.
DOI: 10.1063/1.3082096
Google Scholar
[43]
S. Panigrahia, D. Basak, Core–shell TiO2/ ZnO nanorods for efficient ultraviolet photodetection, Nanoscale 3 (2011) 2336.
DOI: 10.1039/c1nr10064e
Google Scholar
[44]
T. P. Chen, S. J. Young, S. J. Chang, C. H. Hsiao, Y. J. Hsu, Bending effects of ZnO nanorod metal–semiconductor–metal photodetectors on flexible polyimide substrate, Nanoscale Res. Lett. 7 (2012) 214.
DOI: 10.1186/1556-276x-7-214
Google Scholar
[45]
R. C. Wang, H.Y. Lin, S. J. Chen, Y. F. Lai, M. R. S. Huang, Boundary layer-assisted chemical bath deposition of well-aligned ZnO rods on Si by a one-step method, Appl. Phys. A 96 (2009) 775.
DOI: 10.1007/s00339-009-5271-6
Google Scholar
[46]
W. D. Yu, X. M. Li, X.D. Gao, Self-catalytic synthesis and photoluminescence of ZnO nanostructures on ZnO nanocrystal substrates, Appl. Phys. Lett. 84 (2004) 2658.
DOI: 10.1063/1.1695097
Google Scholar
[47]
A. F. Aktaruzzaman, G. L. Sharma, L. K. Malhotra, optical and annealing characteristics of ZnO: Al films prepared by spray pyrolysis, Thin Solid Films 198 (1991) 67.
DOI: 10.1016/0040-6090(91)90325-r
Google Scholar
[48]
W. R. Liu, Y. H. Li, W. F. Hsieh, C. H. Hsu, W.C. Lee, M. Hong, J. Kwo, Correlation between crystal structure and photoluminescence for epitaxial ZnO on Si (1 1 1) using a γ-Al2O3 buffer layer J. Phys. D: Appl. Phys. 41 (2008) 065105.
DOI: 10.1088/0022-3727/41/6/065105
Google Scholar
[49]
Y. C. Ou, Z. Y. Wu, F. R. Chen, J. J. Kai, W. B. Jian, Characterization of Room-Temperature Ferromagnetic Zn1-xCoxO Nanowires—from Nanowires. In: Prete, P. (ed. ), InTech, Croatia 2010, pp.153-170.
DOI: 10.5772/39509
Google Scholar