Influence of Temperature on the Morphology and Grain Size of Cupric Oxide (CuO) Nanostructures via Solvothermal Method

Article Preview

Abstract:

Cupric oxide (CuO) nanostructures have been synthesized successfully through solvothermal chemical route. The influence of temperature on the morphology and the grain size of CuO have been investigated. Phase analysis of synthesized CuO has also been carried out using X-ray diffraction (XRD). XRD peaks showed the monoclinic crystalline phase of CuO nanostructures. The morphology of CuO has been studied by using Scanning Electron Microscope (SEM). SEM images showed the rod-like and sheet-like morphology of CuO. Fourier Transform Infrared (FTIR) spectroscopy has been employed to study the vibrational modes. The FTIR spectra confirmed the stretching vibrations of Cu-O bond. In addition, UV-visible absorption spectra have been implemented to estimate the energy bandgap of the synthesized CuO nanostructures. The energy bandgap of as prepared CuO nanostructures was estimated between 2.0 eV to 2.52 eV. The grain size was found to be increasing with the rise in temperature. The increase in grain size with increasing temperatures causes the reduction in the bandgap, which is attributed to the quantum confinement effect at smaller particle size.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-7

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Nagase K., Zheng Y., Kodama Y. and Kakuta J., Journal of Catalysis; 1999; 187: 123-130.

Google Scholar

[2] Yin M., Wu C. K., Lou, Y., Burda C., Koberstein J. T. and Zhu Y., Journal of American Chemical Society; 2005; 127: 9506-9511.

DOI: 10.1021/ja050006u

Google Scholar

[3] Zhang V., Liu J., Peng Q., Wang X. and Li Y., Chemistry of Materials; 2006; 18: 867-871.

Google Scholar

[4] Wu H., Lin D. and Pan W., Applied Physics Letters; 2006; 89: 1-3.

Google Scholar

[5] Poizot P., Laruelle S., Grugeon S., Dupontl L., Tarascon J. M., Nature; 2000; 407; 496-99.

Google Scholar

[6] Hsieh C. T., Chen J. M., Lin H. H. and Shih H. C., Applied Physics Letters; 2003; 83: 3383-3385.

Google Scholar

[7] Wu M. K., Ashburn J. R., Torng C. J., Hor P. H., Meng R. L. and Gao L., Physics Revised Letters; 1987; 58: 908-910.

Google Scholar

[8] Chang M. H., Liu H. S. and Tai C. T., Powder technology; 2011; 207: 378-386.

Google Scholar

[9] Chen J. T., Zhang F., Wang J., Zhang G. A., Miao B. B., Fan X. Y., Yan D. and Yan P. X., The Journal of Alloys and Compounds; 2008; 454: 268-273.

DOI: 10.1016/j.jallcom.2006.12.032

Google Scholar

[10] Yu L., Zhang G., Wu Y., Bai X., Guo D., Journal  of Crystal Growth; 2008: 310: 3125-30.

Google Scholar

[11] Zhu J., Bi H., Wang Y., Wang X., Yang X., Lu L., Materials Letters; 2007; 61: 5236-5238.

Google Scholar

[12] Su Y. K., Shen C. M., Yang H. T., Li H. L. and Gao H. J., The Transactions of Nonferrous Metals Society of China; 2007; 17: 783-786.

Google Scholar

[13] Yuan G. Q., Jiang H. F., Lin C., Liao S. J., Journal of Crystal Growth; 2007; 303: 400-406.

Google Scholar

[14] Zhang H., Li S., Ma X., Yang D., Materials Research Bulletin; 2008; 43; 1291-1296.

Google Scholar

[15] Zhang M., Xu X., Zhang M., Materials Letters; 2008; 62: 385-388.

Google Scholar

[16] Ma M. G., Zhu Y. J., The Journal of Alloys and Compounds; 2008; 455; 15-18.

Google Scholar

[17] Chen Z. Z., Shi E. W., Zheng Y. Q., Li W. J., Xiao B., Zhuang J. Y., Journal of Crystal Growth; 2003; 249: 294-300.

Google Scholar

[18] Zhang Y. C., Tang J. Y., Wang G. L., Zhang M., Hu X.Y., Journal  of Crystal Growth; 2006; 294: 278-282.

Google Scholar

[19] Tang X. L., Ren L., Sun L. N., Tian W. G., Cao M. H. and Hu C. W., Chemical Research in Chinese Universities; 2006; 22: 547-551.

Google Scholar

[20] Song X., Yu H., Sun S., Journal of Colloid and Interface Science; 2005; 289: 588-591.

Google Scholar

[21] Keyson D., Volanti D. P., Cavalcante L. S., Simões A. Z., Varela J. A. and Longo E., Materials Research Bulletin; 2008; 43: 771-775.

DOI: 10.1016/j.materresbull.2007.03.019

Google Scholar

[22] Xu X., Zhang M., Feng J. and Zhang M., Materials Letters; 2008; 62: 2787-2790.

Google Scholar

[23] Yang Z., Xu J., Zhang W., Liu A. and Tang S., Journal of Solid State Chemistry; 2007; 180: 1390-1396.

Google Scholar

[24] Callister W. D., Rethwisch D. G., Fundamentals of Materials Science and Engineering, John Wiley & Sons, third edition, (2007).

Google Scholar

[25] Das M. A., Nam S. H., Kim Y. S. and W. B. Kim, Journal of Solid State Electrochemical; 2010; 14: 1719-1726.

Google Scholar

[26] Zou G. F., Li H., Zhang D., Xiong W., Dong K. and Qian C., ‎The Journal of Physical Chemistry; 2006; 110: 1632-1637.

Google Scholar

[27] Kliche K. and Popovic Z. V., Physical Review Letters; 1990; 42: 10060-10066.

Google Scholar

[28] Balamurunga B. and Mehta B. R., Thin Solid Films; 2001; 396: 90-96.

Google Scholar

[29] Tsunekawa S., Fukuda T., Kasuya A., Journal of Applied Physics; 2000; 87: 1318-1321.

Google Scholar

[30] Santra K., Sarkar C. K., Mukherjee M. K., Cosh B., Thin Solid Films; 1992; 213: 226-229.

Google Scholar