Size Controlled Synthesis of Fe3O4 Nanoparticles by Ascorbic Acid Mediated Reduction of Fe(acac)3 without Using Capping Agent

Article Preview

Abstract:

Magnetite (Fe3O4) nanoparticles were successfully synthesized by ascorbic acid mediated reduction of Fe (acac)3, without using any intentionally added capping agent. Fine tuning of synthesis parameters such as dropping rate of ascorbic acid solution, addition temperature, reflux temperature and time, and concentration of reactants have yielded nanoparticles of size 15±4 nm. Synthesis is observed to be highly reproducible. Possible mechanism for growth of Fe3O4 nanoparticles is suggested. Nanoparticles are characterized for their size, crystallinity and crystal structure, elemental analysis for impurities (if any), and presence of any additional oxide phases – by SEM and TEM, XRD, EDAX and XPS spectroscopy, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-19

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Yang, C. Shen, H. Yang, C. Xiao, Z. Xu, S. Chen, D. Shi, H. Gao, Synthesis, characterization and self assemblies of magnetite nanoparticles, Surf. and Interface Anal. 38(2006) 1063-1067.

DOI: 10.1002/sia.2329

Google Scholar

[2] H. El Ghandoor, H. Zidan, Mostafa M. H. Khalil, M. I. M. Ismail, Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles, Int. J. Electrochem. Sci. 7(2012) 5734-5745.

DOI: 10.1016/s1452-3981(23)19655-6

Google Scholar

[3] A. Akbarzadeh, M. Samiei, S. Davaran, Magnetic nanoparticles: preparation, physical properties, and applications in biomedicines, Nanoscale Research Letters. 7 (2012) 144.

DOI: 10.1186/1556-276x-7-144

Google Scholar

[4] A. Durdureanu - Angheluta, M. Pinteala, B. C. Simionescu, Tailored and functionalized magnetic particles for biomedical and industrial applications, Material Science and Technology, In Tech, Rijeka (Croatia), (2012).

DOI: 10.5772/30217

Google Scholar

[5] S. Singamaneni, V. N. Bliznyuk, C. Binek, E. Y. Tsymbal, Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications, J. Mater. Chem. 21(2011) 16819–16845.

DOI: 10.1039/c1jm11845e

Google Scholar

[6] L. Blaney, Magnetite (Fe3O4): Properties, synthesis and applications, The Lehigh review, 15(2007) 33-81.

Google Scholar

[7] Y. Wei, B. Han, X. Hu, Y. Lin, X. Wang, X. Deng, Synthesis of Fe3O4 nanoparticles and their magnetic properties, Procedia Engineering. 27 (2012) 632-637.

DOI: 10.1016/j.proeng.2011.12.498

Google Scholar

[8] A. G. Roca, M. P. Morales, K. O'Grady, C. J. Serna, Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors, Nanotechnology. 17 (2006) 2783–2788.

DOI: 10.1088/0957-4484/17/11/010

Google Scholar

[9] S. Singamaneni, V. N. Bliznyuk, C. Binek, E. Y. Tsymbal, Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications, J. Mater. Chem. 21(2011) 16819–16845.

DOI: 10.1039/c1jm11845e

Google Scholar

[10] K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials. 26 (2005) 3995–4021.

DOI: 10.1016/j.biomaterials.2004.10.012

Google Scholar

[11] J. B. Mamania, L. F. Gamarraa, G. E. Souza Britod, Synthesis and characterization of Fe3O4 nanoparticles with perspectives in biomedical applications, Materials Research. 17(3) (2014) 542-549.

Google Scholar

[12] P. Tartaj, M. P. Morales, S. V. Verdaguer, T. G. Carreno and C. J. Serna, The preparation of magnetic nanoparticles for applications in biomedicine, Journal of Physics D: Applied Physics. 36, (2003) R182–R197.

DOI: 10.1088/0022-3727/36/13/202

Google Scholar

[13] J. Motoyama, T. Hakata, R. Kato, N. Yamashita, T Morino, T. Kobayashi ,H. Honda, Size dependent heat generation of magnetite nanoparticles under AC magnetic field for cancer therapy, BioMagnetic Research and Technology, 6: 4 (2008) 1-9.

DOI: 10.1186/1477-044x-6-4

Google Scholar

[14] S. Sun, H. Zeng, Size-controlled synthesis of magnetite nanoparticles, J. Am. Chem. Soc. 124 (2002) 8204-8205.

DOI: 10.1021/ja026501x

Google Scholar

[15] T. J. Daou, G. Pourroy, S. B. Colin, J. M. Greneche, C. U. Bouillet, P. Legare, P. Bernhardt, C. Leuvrey, and G. Rogez, Hydrothermal synthesis of monodisperse magnetite nanoparticles, " Chem. Mater. 18 (2006) 4399-4404.

DOI: 10.1021/cm060805r

Google Scholar

[16] M. C. Mascolo, Y. Pei, T. A. Ring, Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases, Materials. 6 (2013) 5549-5567.

DOI: 10.3390/ma6125549

Google Scholar

[17] J. Lopez, F. González, F. Bonilla, G. Zambrano, M. Gómez, Synthesis and characterization of Fe3O4 magnetic nanofluid, Rev. Latin Am. Metal. Mat. 30 (1) (2010) 60-66.

Google Scholar

[18] M. Das, P. Dhak, S. Gupta, D. Mishra, T. Maiti, A. Basak, P. Pramanik, Highly biocompatible and water dispersible amine functionalized magnetite nanoparticles, prepared by a low temperature, air assisted polyol process: A new platform for bio-separation and diagnostics, Nanotechnology. 21(2010).

DOI: 10.1088/0957-4484/21/12/125103

Google Scholar

[19] P. A. Sundaram, R. Augustine, M. Kannan, Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from Rhizosphere soil, Biotechnology and Bioprocess Engineering. 17 (2012) 835-840.

DOI: 10.1007/s12257-011-0582-9

Google Scholar

[20] A. Angermann, J. Topfer, Synthesis of magnetite nanoparticles by thermal decomposition of ferrous oxalate dehydrate, J. Mater. Sci. 43 (2008) 5123–5130.

DOI: 10.1007/s10853-008-2738-3

Google Scholar

[21] F. Zhao, B. Zhang, L. Feng, Preparation and magnetic properties of magnetite nanoparticles, Materials Letters. 68 (2012) 112–114.

DOI: 10.1016/j.matlet.2011.09.116

Google Scholar

[22] S. Rongrong, G. Guanhua, Y. Ran, Z. Kechao, Q. Guanzhou, L. Xiaohe, Controlled synthesis and characterization of monodisperse Fe3O4 nanoparticles, Chinese Journal of Chemistry. 27 (2009) 739-744.

Google Scholar

[23] L. Wang, J. S. Jiang, Preparation of Fe3O4 spherical nanoporous particles.

Google Scholar

[24] facilitated by polyethylene glycol 4000, Nanoscale Res Lett. 4 (2009) 1439–1446.

Google Scholar

[25] G. Qiu, Q. Wang, M. Nie, Polypyrrole-Fe3O4 magnetic nanocomposite prepared by ultrasonic irradiation, Macromol. Mater. Eng. 291 (2006) 68–74.

DOI: 10.1002/mame.200500285

Google Scholar

[26] A. Abedini, A. R. Daud, M. A. A. Hamid, N. K. Othman, Radiolytic formation of Fe3O4 nanoparticles: Influence of radiation dose on structure and magnetic properties, PLOS ONE. 9 (3) (2014) 1-8.

DOI: 10.1371/journal.pone.0090055

Google Scholar

[27] J. Xu, H. Yang, W. Fu, K. Du, Y. Sui, J. Chen, Y. Zeng, M. Li, G. Zou, Preparation and magnetic properties of magnetite nanoparticles by sol–gel method, Journal of Magnetism and Magnetic Materials. 309 (2007) 307–311.

DOI: 10.1016/j.jmmm.2006.07.037

Google Scholar

[28] Lemine, K. Omri, B. Zhang, L. El Mirb, M. Sajieddine, A. Alyamani, M. Bououdina, Sol–gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties, Superlattices and Microstructures. 52(2012) 793–799.

DOI: 10.1016/j.spmi.2012.07.009

Google Scholar