Mechanical Properties and Thermal Resistance of Natural Rubber Nanocomposite Reinforced with Quaternized Polyvinyl Alcohol/Silica Nanoclusters

Article Preview

Abstract:

Quaternized polyvinyl alcohol (QPVA) was synthesized and used as an intermedium to improve dispersion of silica (SiO2) in natural rubber (NR). QPVA/SiO2 nanoclusters reinforced NR nanocomposite was prepared by latex compounding via electrostatic interaction. TEM micrographs demonstrated QPVA/SiO2 nanoclusters were distributed around NR particles, forming shell-core structure. The mechanical properties and thermal ageing resistance of NR-QPVA/SiO2 were significantly improved compared with that of neat NR. The tensile strength of NR-QPVA/SiO2 film was improved by 60%, when the SiO2 content is 3%. SEM pictures indicated SiO2 was homogenous dispersed throughout NR matrix in the presence of QPVA. It also demonstrated that SiO2 could enhance thermal stability of NR, as NR-QPVA/SiO2 had best surface morphology after 72 hours thermal ageing at 100 °C. The thermal decomposition temperature and glass transition temperature of NR-QPVA/SiO2 film increased to a higher temperature due to strong polymer–filler interaction, which also indicated that all the ingredients were compatible and homogenous.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

46-56

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Nawamawat, J.T. Sakdapipanich, C.C. Ho, Y. Ma, J. Song, J.G. Vancso, Surface nanostructure of Hevea brasiliensis natural rubber latex particles, Colloid. Surfaces A, 390 (2011) 157-166.

DOI: 10.1016/j.colsurfa.2011.09.021

Google Scholar

[2] V.V. Rajan, W.K. Dierkes, R. Joseph, J.W.M. Noordermeer, Science and technology of rubber reclamation with special attention to NR-based waste latex products, Prog. Polym. Sci., 31 (2006) 811-834.

DOI: 10.1016/j.progpolymsci.2006.08.003

Google Scholar

[3] K. Sanguansap, T. Suteewong, P. Saendee, U. Buranabunya, P. Tangboriboonrat, Composite natural rubber based latex particles: a novel approach, Polymer, 46 (2005) 1373-1378.

DOI: 10.1016/j.polymer.2004.11.074

Google Scholar

[4] N.K. On, A.A. Rashid, M.M.M. Nazlan, H. Hamdan, Thermal and mechanical behavior of natural rubber latex-silica aerogel film, J. Appl. Polym. Sci., 124 (2012) 3108-3116.

DOI: 10.1002/app.35354

Google Scholar

[5] K. Songsing, T. Vatanatham, N. Hansupalak, Kinetics and mechanism of grafting styrene onto natural rubber in emulsion polymerization using cumene hydroperoxide–tetraethylenepentamine as redox initiator, Eur. Polym. J., 49 (2013) 1007-1016.

DOI: 10.1016/j.eurpolymj.2013.01.027

Google Scholar

[6] M. Singh, J. Esquena, C. Solans, K. Booten, T.F. Tadros, Influence of hydrophobically modified inulin (INUTEC NRA) on the stability of vulcanized natural rubber latex, Colloid Surface A, 451 (2014) 90-100.

DOI: 10.1016/j.colsurfa.2014.03.057

Google Scholar

[7] S.S. Ochigbo, A.S. Luyt, W.W. Focke, Latex derived blends of poly(vinyl acetate) and natural rubber: thermal and mechanical properties, J. Mater. Sci., 44 (2009) 3248-3254.

DOI: 10.1007/s10853-009-3435-6

Google Scholar

[8] T. Pojanavaraphan, L. Liu, D. Ceylan, O. Okay, R. Magaraphan, D.A. Schiraldi, Solution Cross-Linked Natural Rubber (NR)/Clay Aerogel Composites, Macromolecules, 44 (2011) 923-931.

DOI: 10.1021/ma102443k

Google Scholar

[9] J.R. Potts, O. Shankar, L. Du, R.S. Ruoff, Processing-Morphology-Property Relationships and Composite Theory Analysis of Reduced Graphene Oxide/Natural Rubber Nanocomposites, Macromolecules, 45 (2012) 6045-6055.

DOI: 10.1021/ma300706k

Google Scholar

[10] L. Kong, Z. Peng, S. -D. Li, P.M. Bartold, Nanotechnology and its role in the management of periodontal diseases, Periodontol 2000, 40 (2006) 184-196.

DOI: 10.1111/j.1600-0757.2005.00143.x

Google Scholar

[11] Y. Ikedai, Y. Kameda, Preparation of Green Composites by the Sol-Gel Process In Situ Silica Filled Natural Rubber, J. Sol-Gel Sci. Techn., 31 (2004) 137-142.

DOI: 10.1023/b:jsst.0000047975.48812.1b

Google Scholar

[12] J. Ramier, C. Gauthier, L. Chazeau, L. Stelandre, L. Guy, Payne effect in silica-filled styrene-butadiene rubber: Influence of surface treatment, J. Polym. Sci. Polym. Phys., 45 (2007) 286-298.

DOI: 10.1002/polb.21033

Google Scholar

[13] D. Fragiadakis, L. Bokobza, P. Pissis, Dynamics near the filler surface in natural rubber-silica nanocomposites, Polymer, 52 (2011) 3175-3182.

DOI: 10.1016/j.polymer.2011.04.045

Google Scholar

[14] L. Wahba, M. D'Arienzo, R. Donetti, T. Hanel, R. Scotti, L. Tadiello, F. Morazzoni, In situ sol-gel obtained silica-rubber nanocomposites: influence of the filler precursors on the improvement of the mechanical properties, RSC Adv., 3 (2013).

DOI: 10.1039/c3ra22706e

Google Scholar

[15] A. Tohsan, P. Phinyocheep, S. Kittipoom, W. Pattanasiriwisawa, Y. Ikeda, Novel biphasic structured composite prepared byin situsilica filling in natural rubber latex, Polym. Advan. Technol., 23 (2012) 1335-1342.

DOI: 10.1002/pat.2051

Google Scholar

[16] P. Weng, Q. Wei, Z. Tang, T. Lin, B. Guo, The influence of molybdenum disulfide nanoplatelets on the dispersion of nano silica in natural rubber composites, Appl. Surf. Sci., 359 (2015) 782-789.

DOI: 10.1016/j.apsusc.2015.10.172

Google Scholar

[17] M.C.W. Somaratne, N.M.V.K. Liyanage, S. Walpalage, Contribution of hydrogen and/or covalent bonds on reinforcement of natural rubber latex films with surface modified silica, J. Appl. Polym. Sci., 131 (2014) 40380.

DOI: 10.1002/app.40380

Google Scholar

[18] Z. Peng, L.X. Kong, S. -D. Li, Y. Chen, M.F. Huang, Self-assembled natural rubber/silica nanocomposites: Its preparation and characterization, Compos. Sci. Technol., 67 (2007) 3130-3139.

DOI: 10.1016/j.compscitech.2007.04.016

Google Scholar

[19] A.R. Hajipour, F. Mohammadsaleh, Polyvinyl alcohol-stabilized cuprous oxide particles: efficient and recyclable heterogeneous catalyst for azide-alkyne cycloaddition in water at room temperature, J. Iran. Chem. Soc., 12 (2015) 1339-1345.

DOI: 10.1007/s13738-015-0599-7

Google Scholar

[20] P. Fatehi, A. Tutus, H. Xiao, Cationic modified PVA as a dry strength additive for rice straw fibers, Bioresource Technol., 100 (2009) 749-755.

DOI: 10.1016/j.biortech.2008.07.042

Google Scholar

[21] J. Sun, X. Tian, P. Feng, S. Gong, Y. Yuan, Preparation of Low-Allergen Natural rubber Latex by Transglutaminase Catalysis, J. Appl. Polym. Sci., 129 (2013) 2404-2410.

DOI: 10.1002/app.38963

Google Scholar

[22] W. Pichayakorn, J. Suksaeree, P. Boonme, W. Taweepreda, G.C. Ritthidej, Preparation of Deproteinized Natural Rubber Latex and Properties of Films Formed by Itself and Several Adhesive Polymer Blends, Ind. Eng. Chem. Res., 51 (2012) 13393-13404.

DOI: 10.1021/ie301985y

Google Scholar

[23] Z. Peng, L.X. Kong, A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites, Polym. Degrad. Stabil., 92 (2007) 1061-1071.

DOI: 10.1016/j.polymdegradstab.2007.02.012

Google Scholar

[24] X. She, C. He, Z. Peng, L. Kong, Molecular-level dispersion of graphene into epoxidized natural rubber: Morphology, interfacial interaction and mechanical reinforcement, Polymer, 55 (2014) 6803-6810.

DOI: 10.1016/j.polymer.2014.10.054

Google Scholar