Visible Light Triggered Chlorhexidine Release of Nitrogen-Doped TiO2 Nanoparticle Dental Desensitizer

Article Preview

Abstract:

The purpose of this study was to develop a novel dental desensitizer with nitrogen-doped TiO2 nanoparticles that show an optical response under visible light and investigate the triggered release of chlorhexidine from these nanoparticles in response to remote visible-light irradiation. Diffusive ultraviolet-visible spectroscopy indicated that N-doped TiO2 nanoparticles solvothermally treated at 130°C for 2 h showed the highest absorbance at 470 nm. X-ray photoelectron spectroscopy confirmed that nitrogen was substantially doped into the TiO2 lattice via the existence of N–Ti–O or N–Ti–N linkages (396.1 eV of N 1s). Chlorhexidine-release and agar-diffusion antibacterial tests revealed that visible-light irradiation statistically accelerated the chlorhexidine release and antibacterial activity. An agar overlay biocompatibility test showed that only the 0.1% chlorhexidine experimental group was biocompatible according to ISO 7405. Therefore, N-doped TiO2 nanoparticles should enable the development of new visible-light-mediated antibacterial desensitizers in the field of dentistry.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-62

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Stecksen-Blicks, G. Renfors, N.D. Oscarson, F. Bergstrand, S. Twetman, Caries-preventive effectiveness of a fluoride varnish: a randomized controlled trial in adolescents with fixed orthodontic appliances, Caries Res. 41 (2007) 455-459.

DOI: 10.1159/000107932

Google Scholar

[2] B. Ogaard, E. Larsson, T. Henriksson, D. Birkhed, S.E. Bishara, Effects of combined application of antimicrobial and fluoride varnishes in orthodontic patients, Am. J. Orthod. Dentofac. 120 (2001) 28-35.

DOI: 10.1067/mod.2001.114644

Google Scholar

[3] S. Oh, K.S. Moon, J.H. Moon, J.M. Bae, S.H. Jin, Visible Light Irradiation-Mediated Drug Elution Activity of Nitrogen-Doped TiO2 Nanotubes, J. Nanomat. (2013).

DOI: 10.1155/2013/802318

Google Scholar

[4] S. Sun, W. Wang, L. Zhang, L. Zhou, W. Yin, M. Shang, Visible light-induced efficient contaminant removal by Bi5O7I, Environ. Sci. Technol. 43 (2009) 2005-(2010).

DOI: 10.1021/es8032814

Google Scholar

[5] D.Y. Wu, M.C. Long, W.M. Cai, C. Chen, Y.H. Wu, Low temperature hydrothermal synthesis of N-doped TiO2 photocatalyst with high visible-light activity, J. Alloy. Compd. 502 (2010) 289-294.

DOI: 10.1016/j.jallcom.2010.04.189

Google Scholar

[6] C. Chen, M.C. Long, H. Zeng, W.M. Cai, B.X. Zhou, J.Y. Zhang, Y.H. Wu, D.W. Ding, D.Y. Wu, Preparation, characterization and visible-light activity of carbon modified TiO2 with two kinds of carbonaceous species, J. Mol. Catal. A-Chem. 314 (2009).

DOI: 10.1016/j.molcata.2009.08.014

Google Scholar

[7] F.H. Tian, C.B. Liu, DFT description on electronic structure and optical absorption properties of anionic S-doped anatase TiO2, J. Phys. Chem. B. 110 (2006) 17866-17871.

DOI: 10.1021/jp0635462

Google Scholar

[8] C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, E. Giamello, Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations, J. Phys. Chem. B. 109 (2005) 11414-11419.

DOI: 10.1021/jp051756t

Google Scholar

[9] S. Livraghi, M.R. Chierotti, E. Giamello, G. Magnacca, M.C. Paganini, G. Cappelletti, C.L. Bianchi, Nitrogen-Doped Titanium Dioxide Active in Photocatalytic Reactions with Visible Light: A Multi-Technique Characterization of Differently Prepared Materials, J. Phys. Chem. C. 112 (2008).

DOI: 10.1021/jp803806s

Google Scholar

[10] F. Peng, L.F. Cai, L. Huang, H. Yu, H.J. Wang, Preparation of nitrogen-doped titanium dioxide with visible-light photocatalytic activity using a facile hydrothermal method, J. Phys. Chem. Solids. 69 (2008) 1657-1664.

DOI: 10.1016/j.jpcs.2007.12.003

Google Scholar

[11] L. Boyanova, G. Gergova, R. Nikolov, S. Derejian, E. Lazarova, N. Katsarov, I. Mitov, Z. Krastev, Activity of Bulgarian propolis against 94 Helicobacter pylori strains in vitro by agar-well diffusion, agar dilution and disc diffusion methods, J. Med. Microbiol. 54 (2005).

DOI: 10.1099/jmm.0.45880-0

Google Scholar

[12] ISO7405, Dentistry - Evaluation of biocompatibility of medical devices used in dentistry, Geneva, Switzerland (2008).

Google Scholar

[13] X.B. Chen, C. Burda, Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles, J. Phys. Chem. B. 108 (2004) 15446-15449.

DOI: 10.1021/jp0469160

Google Scholar

[14] M.S. Wong, H.P. Chou, T.S. Yang, Reactively sputtered N-doped titanium oxide films as visible-light photocatalyst, Thin Solid Films. 494 (2006) 244-249.

DOI: 10.1016/j.tsf.2005.08.132

Google Scholar

[15] S. Sakthivel, M. Janczarek, H. Kisch, Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2, J. Phys. Chem. B. 108 (2004) 19384-19387.

DOI: 10.1021/jp046857q

Google Scholar