Preparation and Characterization of Bacterial Cellulose/TiO2 Hydrogel Nanocomposite

Article Preview

Abstract:

Bacterial cellulose (BC) is a biopolymer with interesting properties, such as biocompatibility, high tensile strength, high absorption capacity, water retention and high crystallinity. Nanoparticles of titanium dioxide (TiO2) are extremely important in electrical applications, photocatalysis, sensors and biomedical areas. Multifunctional materials, based on bacterial cellulose, with differentiated properties can be designed from the BC/TiO2 nanocomposite by ex situ method of sol-gel immersion. It was manufactured as a nanocomposite consisting of BC/TiO2 hydrogel. Characterizations were carried out by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and fourier transform infrared spectroscopy (FTIR). The morphological analysis of nanocomposite revealed the existence of molecular interaction and adhesion between TiO2 nanoparticles and cellulosic nanofibers matrix, where the presence of Ti peaks in EDS spectra was discovered, proving the successful incorporation of nanoparticles. The FTIR showed modification on the functional groups, suggesting interaction between the components. The manufacturing of a BC/TiO2 nanocomposite by method of sol-gel immersion has a great potential for future applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-80

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.R. Chawla, I.B. Bajaj, S.A. Survase, R.S. Singhal, Microbial Cellulose: Fermentative Production and Applications, Food Technol. Biotech. 47 (2) (2009) 107-124.

Google Scholar

[2] W. Czaja, A. Krystynowicz, S. Bielecki, M. Brown Jr., Microbial cellulose – the natural, Biomaterials 27 (2) (2006) 145-151.

DOI: 10.1016/j.biomaterials.2005.07.035

Google Scholar

[3] W. Czaja, D. Romanovicz, M. Brown Jr., Structural investigations of microbial cellulose produced in stationary and agitated culture, Cellulose 11 (2004) 403-411.

DOI: 10.1023/b:cell.0000046412.11983.61

Google Scholar

[4] W.A. Daoud, J.H. Xin, I. Zhang, Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities, Surf. Sci. 599 (2005) 69-75.

DOI: 10.1016/j.susc.2005.09.038

Google Scholar

[5] F. Esa, M.S. Tasirin, A.N. Rahman, Overview of Bacterial Cellulose Production and Application, Agric. Agric. Sci. Procedia 2 (2014) 113-119.

DOI: 10.1016/j.aaspro.2014.11.017

Google Scholar

[6] O.L. Galkina, A. Sycheva, A. Blagodatskiy, G. Kaptay, V.L. Katanaev, G. Seisenabeva, The sol–gel synthesis of cotton/TiO2 composites and their antibacterial properties, Surf. Coat. Tech. 253 (2014) 171-179.

DOI: 10.1016/j.surfcoat.2014.05.033

Google Scholar

[7] J. Gutierrez, A. Tercjak, I. Algar, A. Retegi, I. Mondragon, Conductive properties of TiO2/bacterial cellulose hybrid fibres, J. Colloid Interf. Sci. 377 (2012) 88-93.

DOI: 10.1016/j.jcis.2012.03.075

Google Scholar

[8] W. Hu, S. Chen, J. Yang, Z. Li, H. Wang, Functionalized bacterial cellulose derivatives and nanocomposites, Carbohyd. Polym. 101 (2014) 1043-1060.

DOI: 10.1016/j.carbpol.2013.09.102

Google Scholar

[9] Y. Hu, J.M. Catchmark, Formation and Characterization of Spherelike Bacterial Cellulose Particles Produced by Acetobacter xylinum JCM 9730 Strain, Biomacromolecules 11 (2010) 1727-1734.

DOI: 10.1021/bm100060v

Google Scholar

[10] S. Kalia, A. Dufresne, B.M. Cherian, B.S. Kaith, L. Averous, Cellulose-Based Bio- and Nanocomposites: A Review, Int. J. Polym. Sci. (2011) 837-875.

Google Scholar

[11] S. Khan, M. Ul-islam, W.A. Khattak, M.W. Ullah, J.K. Park, Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility, Cellulose 22 (2015) 565-579.

DOI: 10.1007/s10570-014-0528-4

Google Scholar

[12] D. Klemm, B. Heublein, H. Fink, A. Bohn, Cellulose: Fascinating Biopolymer and Sustainable Raw Material, Angew Chem-Ger. Edit. 44 (2005) 3358-3393.

DOI: 10.1002/anie.200460587

Google Scholar

[13] P.A.A.P. Marques, T. Trindade, C. Pascoal Neto, Titanium dioxide/cellulose nanocomposites prepared by a controlled hydrolysis method, Compos. Sci. Technol. 66 (2006) 1038-1044.

DOI: 10.1016/j.compscitech.2005.07.029

Google Scholar

[14] J.R. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites, Chem. Soc. Rev. 40 (2011) 3941-3994.

DOI: 10.1039/c0cs00108b

Google Scholar

[15] W. Zhou, Z. Li, Z. Zhang, K. Onda, S. Ogihara, Y. Okimoto, S. Koshihara, Nanostructured TiO2 photocatalyst and pump-probe spectroscopic study, Front. Mater. Sci. 3 (4) (2009) 403-408.

DOI: 10.1007/s11706-009-0055-7

Google Scholar

[16] H. Zhou, X. Chen, Characteristics and degradation of chitosan/cellulose acetate microspheres with different model drugs, Front. Mater. Sci. 2 (4) (2008) 417-425.

DOI: 10.1007/s11706-008-0063-z

Google Scholar

[17] P. Ross, R. Mayer, M. Benziman, Cellulose Biosynthesis and Function in Bacteria, Microbiol. Rev. 55 (1) (1991) 35-58.

DOI: 10.1128/mr.55.1.35-58.1991

Google Scholar

[18] I. Sulaeva, U. Henniges, T. Rosenau, A. Potthast, Bacterial cellulose as a material for wound treatment: Properties and modifications. A review, Biotechnol. Adv. 33 (2015) 1547-1571.

DOI: 10.1016/j.biotechadv.2015.07.009

Google Scholar

[19] M.J. Uddin, F. Cesano, F. Bonino, F. Bordiga, G. Spoto, D. Scarano, A. Zecchina, Photoactive TiO2 films on cellulose fibres: synthesis and characterization, J. Photoch. Photobio. A 189 (2007) 286-294.

DOI: 10.1016/j.jphotochem.2007.02.015

Google Scholar

[20] S. Yeh, Y. Chen, C. His, H. Ko, M. Wang, Thermal Behavior and Phase Transformation of TiO2 Nanocrystallites Prepared by a Coprecipitation Route, Metall. Mater. Trans. A 45 (1) (2014) 261-268.

DOI: 10.1007/s11661-013-1963-9

Google Scholar

[21] H. Zhu, J. Shiru, T. Wan, Y. Jia, H. Yang, J. Li, L. Yan, C. Zhong, Biosynthesis of spherical Fe3O4/bacterial cellulose nanocomposites as adsorbents for heavy metal ions, Carbohyd. Polym. 86 (2011) 1558-1564.

DOI: 10.1016/j.carbpol.2011.06.061

Google Scholar

[22] S.Y. Oh, D.I. Yoo, Y. Shinb, G. Seo, FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide, Carbohyd. Res. 340 (2005) 417-428.

DOI: 10.1016/j.carres.2004.11.027

Google Scholar

[23] M.A. Mohamed, W.M.N. Salleh, J. Jaafar, A.F. Ismail, M.B. Mutalib, S.M. Jamil, Incorporation of N-doped TiO2 nanorods in regenerated cellulose thin films fabricated from recycled newspaper as a green portable photocatalyst, Carbohyd. Polym. 133 (2005).

DOI: 10.1016/j.carbpol.2015.07.057

Google Scholar

[24] D. Sun, J. Yang, X. Wang, Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision, Nanoscale 2 (2010) 287-292.

DOI: 10.1039/b9nr00158a

Google Scholar