Design Considerations Influencing Optical Response in Gold Spherical Nanoparticles

Article Preview

Abstract:

In this article, the relations between extinction cross section and Gold nanoparticle's parameters such as dimensions have been investigated. In this work, the extinction cross section of the core-shell nanoparticles is analyzed by changing the shell material and its thickness. By this, the interesting results such as shifting resonant peak in optical response are obtained. Moreover, a new model of nanostructure is proposed in which the resonant peak of extinction cross section can be controlled by adding silicon nanoparticles and impurity in the shell. This method can be used for tuning of the scattering properties of the core-shell nanoparticle. In the following, we demonstrate that the effective epsilon properties can be used for tuning of the desired optical response in the combinational structure of the spherical nanoparticles. At the end, the effective relative epsilon is also calculated for the selected structures. The operational frequency band is selected from 300 (THz) to 900 (THz).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-11

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Fan1, W. Zheng, D. Singh, Light scattering and surface plasmons on small spherical Particles, Light: Science & Applications 3(2014) e179.

DOI: 10.1038/lsa.2014.60

Google Scholar

[2] M. V. Rybin etal., Fano resonances in antennas: General control over radiation patterns, Phys. Rev. B 88(2013) 205106.

Google Scholar

[3] P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine, Acc. Chem. Res. 41 (2008) 1578–1586.

DOI: 10.1021/ar7002804

Google Scholar

[4] X. Liu, Q. Huo, A washing-free and amplification-free one-step homogeneousassay for protein detection using gold nanoparticles probes and dynamic lightscattering, J. Immunol. Methods 349 (2009) 38–44.

DOI: 10.1016/j.jim.2009.07.015

Google Scholar

[5] S. Kawata, Y. Inouye, P. Verma, Plasmonics for near-field nano-imaging andsuperlesing, Nat. Photon. 3(2009) 388–394.

DOI: 10.1038/nphoton.2009.111

Google Scholar

[6] C.K.R. Catchpole, A. Polman, Plasmonic solar cells, Opt. Express 16 (2008) 21793–21800.

DOI: 10.1364/oe.16.021793

Google Scholar

[7] B. S. Lukyanchuk, M. I. Tribelski, V. V. Ternovski, Light scattering at nanoparticles close to Plasmon resonance frequencies,J. Opt. Technol, 73(2006) 371–376.

Google Scholar

[8] H. Suzuki, I.S. Lee, Calculation of the Mie scattering field inside and outside a coated spherical particle , International Journal of Physical Sciences, 3(1)( 2008) 038–041.

Google Scholar

[9] R. Bardhan, Nanostructures for Plasmon Enhanced Fluorescence Sensing: From Photophysics to Biomedicine, Ph. D thesis, Houston, Texas, (2010).

Google Scholar

[10] M. Hu, J. Chen, Z.Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez and Y. Xia, Gold nanostructures: engineering their plasmonic properties for biomedical Applications, Chem. Soc. Rev., 35(2006) 1084–1094.

DOI: 10.1039/b517615h

Google Scholar

[11] D. Wu, X. Xu, X. Liu, Tunable near-infrared optical properties of three-layered metal nanoshells, J. Chem. Phys., 129(7)( 2008) 074711-1–074711-5.

DOI: 10.1063/1.2971179

Google Scholar

[12] A. SalmanOgli, A. Rostami, Investigation of Surface Plasmon Resonance in Multi-layered Onion-Like Heteronanocrystal Structures, IEEE T. Nanotechnol., 12(2013) 831-838.

DOI: 10.1109/tnano.2013.2275034

Google Scholar

[13] J. R. Cole, Photothermal Energy Conversion by Plasmonic Nanoparticles, RICE UNIVERSITY, Ph. D thesis, Houston, Texas, (2008).

Google Scholar

[14] O. Stranik, Plasmonic enhancement of fluorescence for biomedical diagnostics, Dublin City University, Ph. D thesis, Dublin, (2007).

Google Scholar

[15] C. J. Radloff, Concentric Nanoshells and Plasmon Hybridization, RICE UNIVERSITY, Ph. D thesis, Houston, Texas, (2003).

Google Scholar

[16] P. Malik, V. Katyal, V. Malik, A. Asatkar, G. Inwati, T. K. Mukherjee, Nanobiosensors: Concepts and Variations, ISRN Nanomaterials, 2013(2013) 327435-327444.

DOI: 10.1155/2013/327435

Google Scholar

[17] D. H. Ortgies etal., In Vivo Deep Tissue Fluorescence and Magnetic Imaging Employing Hybrid Nanostructures, ACS Appl. Mater. Interfaces, 8(2)(2016) 1406–1414.

DOI: 10.1021/acsami.5b10617

Google Scholar

[18] R. Visariaa, J .C. Bischofabc, M. Lorend, B. Williamsd, E. Ebbinie, G. Paciottif, Nanotherapeutics for enhancing thermal therapy of cancer, INT J HYPERTHER, 23(6)(2007) 501-511.

Google Scholar

[19] L. Lu, G. Burkey, I. Halaciuga, D.V. Goia, Core–shell gold/silver nanoparticles: Synthesis and optical properties, J Colloid Interface Sci., 392(2013) 90-95.

DOI: 10.1016/j.jcis.2012.09.057

Google Scholar

[20] M. S. Shore, J. Wang, A. C Johnston-Peck, A. L. Oldenburg, J. B. Tracy , Synthesis of Au(Core)/Ag(Shell) nanoparticles and their conversion to AuAg alloy nanoparticles, SMALL, 7(2)(2011) 230-234.

DOI: 10.1002/smll.201001138

Google Scholar

[21] J. Shen, X. Cai, Algorithm of Numerical Calculation on Lorentz-Mie Theory, PIERS, (2005) 691-696.

DOI: 10.2529/piers050127104820

Google Scholar

[22] Stefan Alexander Maier, Plasmonics: Fundamentals and Applications, first ed., Springer, (2007).

Google Scholar

[23] J. Viquerat, M. Klemm, S. Lanteri, C. Scheid, Theoretical and numerical analysis of local dispersion models coupled to a discontinuous Galerkin time-domain method for Maxwell's equations, research report, INRIA, (2013).

Google Scholar

[24] M. L. Brongersma, P. G. Kik, Surface plasmon nanophotonics. The Netherlands: Springer Verlag, (2007).

Google Scholar

[25] J. D. Jackson, Classical Electrodynamics, second ed. Wiley, New York, (1999).

Google Scholar

[26] H. Wang, Tunable plasmonic nanostructures: from fundamental nanoscale optics to surface-enhanced spectroscopies, Ph.D. dissertation, Rice University, (2007).

Google Scholar

[27] C. Sӧnnichsen, Plasmons in metal nanostructures, dissertation in Photonics and Optoelectronics, University of Munich, (2001).

Google Scholar

[28] Zhabiz Rahimi, The Finite Integration Technique (FIT) and the Application in Lithography Simulations, Ph.D. dissertation, Friedrich-Alexander University, Erlangen, (2011).

Google Scholar

[29] L. M. Liz-Marzán, M. Giersig, P. Mulvaney, Synthesis of nanosized gold-silica core-shell particles. Langmuir, 12(1996) 4329–4335.

DOI: 10.1021/la9601871

Google Scholar

[30] X Huang, MA El-Sayed, Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy, Journal of Advanced Research (JAR), 1(2010) 13-28.

DOI: 10.1016/j.jare.2010.02.002

Google Scholar