Facile Synthesis of Co3O4 Nanoparticles and their Biomimetic Activity

Article Preview

Abstract:

Co3O4 nanoparticles with biomimetic activity have been synthesized using inorganic precursor by a simple liquid precipitation method without use of any organic and assisted agents. XRD and IR results showed that the as-prepared product was well-crystalline cubic Co3O4 phase with a lattice constant of a=8.079Å. The TEM image showed that the obtained Co3O4 product possesses a spherical and rectangular shape with a diameter ranging from 10 to 20nm. The Co3O4 nanoparticles catalyzed oxidation of typical peroxidase substrate (ABTS) and 1,3,5-trimethylbenzene (TMB) to give the same color changes as microperoxidase -11( MP-11), respectively. And the catalysis by Co3O4 nanoparticles shows typical Michaelis-Menten curves similar to that of MP-11. These results demonstrate that the Co3O4 nanoparticles possess a biomimetic catalysis activity similar to that found in natural enzyme. The kinetic parameters showed Co3O4 nanoparticles had efficient catalytic activity in comparison to MP-11.The easy preparation, good stability and special properties of Co3O4nanoparticles make them the promising enzyme mimics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

12-19

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Derek R. Miller, Sheikh A. Akbar, Patricia A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: A reviews, Sens. and Actuators. B-Chem. 204(2014)250-272.

DOI: 10.1016/j.snb.2015.02.086

Google Scholar

[2] I. Jolanda M. de Vries1, W. Joost Lesterhuis, Jelle O. Barentsz, Pauline Verdijk, J. Han van Krieken, Otto C. Boerman, Wim J. G. Oyen, Johannes J. Bonenkamp, Jan B. Boezeman, Gosse J. Adema, Jeff W. M. Bulte, Tom W. J. Scheenen, Cornelis J. A. Punt, Arend Heerschap, Carl G. Figdor, Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy, Nature Biotechnol. 23(2005).

DOI: 10.1038/nbt1154

Google Scholar

[3] Kunal Mondal, Md. Azahar Ali, Ved V. Agrawal, Bansi D. Malhotra, Ashutosh Sharma, Highly sensitive biofunctionalized mesoporous electrospun TiO2 nanofiber based interface for biosensing, ACS Appl. Mater. Inter. 6(2014)2516-2627.

DOI: 10.1021/am404931f

Google Scholar

[4] Zhiwen Chen, Dengyu Pan, Zhen Li, Zheng Jiao, Minghong Wu, Chan-Hung Shek, C. M. Lawrence Wu, Joseph K. L. Lai, Recent advances in tin dioxide materials: some developments in thin films, nanowires, and nanorods, Chem. REV. 114(2014)7442-7486.

DOI: 10.1021/cr4007335

Google Scholar

[5] N. Tiwale, Zinc oxide nanowire gas sensors: fabrication, functionalisation and devices, Mater. Sci. Technol. 31(2015)1681-1697.

DOI: 10.1179/1743284714y.0000000747

Google Scholar

[6] Jussara F. Carneiro, Maria J. Paulo, Mohamed Siaj, Ana C. Tavares, Marcos R.V. Lanza, Nb2O5 nanoparticles supported on reduced graphene oxide sheets as electrocatalyst for the H2O2 electrogeneration, J. Catal. 332(2015)51-61.

DOI: 10.1016/j.jcat.2015.08.027

Google Scholar

[7] Yi Zhao Chen, Cai Ting Yang, Chi Bun Ching, Rong Xu, Immobilization of lipases on hydrophobilized zirconia nanoparticles: highly enantioselective and reusable biocatalysts. Langmuir. 24(2008)8877-8884.

DOI: 10.1021/la801384c

Google Scholar

[8] Le Thuy Hoa, Chung Jin Suk, Hur Seung Hyun. A highly sensitive enzyme-free glucose sensor based on Co3O4 nanoflowers and 3D graphene oxide hydrogel fabricated via hydrothermal synthesis. Sensors Actuators B. 223 (2016) 76-82.

DOI: 10.1016/j.snb.2015.09.009

Google Scholar

[9] Lizeng Gao, Jie Zhuang, Leng Nie, Jinbin Zhang, Yu Zhang, Ning Gu, Taihong Wang, Jing Feng, Dongling Yang, Sarah Perrett, Xiyun Yan, Intrinsic peroxidase-like activity of ferromagnetic nanoparticles, Nat. Nanotechnol. 2(2007)577-583.

DOI: 10.1038/nnano.2007.260

Google Scholar

[10] Lihua Wang, Yi Zeng, Aiguo Shen, Xiaodong Zhou, Jiming Hu, Three dimensional nano-assemblies of noble metal nanoparticle-infinite coordination polymers as specific oxidase mimetics for degradation of methylene blue without adding any cosubstrate, Chem. Commum. 51(2015).

DOI: 10.1039/c4cc08089k

Google Scholar

[11] Jianshuai Mu, Yan Wang, Min Zhao, Li Zhang, Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles, Chem. Commun. 48(2012)2540-2542.

DOI: 10.1039/c2cc17013b

Google Scholar

[12] Guoyong Huang, Shengming Xu, Junlian Wang, Recent development of Co3O4 and its composites as anode materials of lithium-ion batteries, Acta. Chimica. Sinica. 71(2013)1589-1597.

DOI: 10.6023/a13060656

Google Scholar

[13] R. Vittal, Kuo-Chuan Ho, Cobalt Oxide Electrodes-Problem and a Solution Through a Novel Approach using Cetyltrimethylammonium Bromide (CTAB), Cat. Rev. -Sci. Eng. 57(2015)145-191.

DOI: 10.1080/01614940.2015.1035192

Google Scholar

[14] Wentao Wang, Xing Xiao, Jia Chen, Li Jia, Carboxyl modified magnetic nanoparticles coated open tubular column for capillary electrochromatographic separation of biomolecules, J. Chromatogr. A 1411(2015)92-100.

DOI: 10.1016/j.chroma.2015.07.111

Google Scholar

[15] M. Casas-Cabanas, G. Binotto, D. Larcher, A. Lecup, V. Giordani, J. M. Tarascon, Defect chemistry and catalytic activity of nanosized Co3O4, Chem. Mater. 21(2009)1939-(1947).

DOI: 10.1021/cm900328g

Google Scholar

[16] Jiefu Yin, Huaqiang Cao, Yuexiang Lu, Self-assembly into magnetic Co3O4 complex nanostructures as peroxidase, J. Mater. Chem. 22(2012)527-534.

DOI: 10.1039/c1jm14253d

Google Scholar

[17] Yanhua Zhang, Aiqin Wang, Yanqiang Huang, Qinqin Xu, Jianzhong Yin, Tao Zhang, Nanocasting synthesis of mesostructured Co3O4 via a supercritical CO2 deposition method and the catalytic performance for co oxidation, Catal. Lett. 142(2012)275-281.

DOI: 10.1007/s10562-011-0748-2

Google Scholar

[18] Katalin Sinkó1, Géza Szabó1, Miklós Zrínyi, Liquid-phase synthesis of cobalt oxide nanoparticles, J. Nanosci. Nanotechno. 11(2011)1-9.

Google Scholar

[19] Yunling Li, Jingzhe Zhao, Yuanyuan Dan, Dechong Ma, Yan Zhao, Shengnan Hou, Haibo Lin, Zichen Wang, Low temperature aqueous synthesis of highly dispersed Co3O4 nanocubes and their electrocatalytic activity studies, Chem. Eng. J. 166(2011)428-434.

DOI: 10.1016/j.cej.2010.10.080

Google Scholar

[20] Bao Wang, Ting Zhu, Haobin Wu, Rong Xu, Junsong Chen, Xiongwen Lou, Porous Co3O4 nanowires derived from long Co(CO3)0. 5(OH)·0. 11H2O nanowires with improved supercapacitive properties, Nanoscale. 6(2012) 2145-9.

DOI: 10.1039/c2nr11897a

Google Scholar

[21] Trilok K. Pathak, Vinod Kumar, Jai Prakash, L.P. Purohit, H.C. Swart, R.E. Kroon, Fabrication and characterization of nitrogen doped p-ZnO on n-Siheterojunctions. Sensors Actuators A. 247 (2016) 475–481.

DOI: 10.1016/j.sna.2016.07.002

Google Scholar

[22] Shijiao Sun, Qiuming Gao, Huanlei Wang, Jingkang Zhu, Hongliang Guo, Influence of textural parameters on the catalytic behavior for CO oxidation over ordered mesoporous Co3O4, Appl. Catal, B-Environ. 97(2010)284-291.

DOI: 10.1016/j.apcatb.2010.04.016

Google Scholar

[23] Yunling Li, Jingzhe Zhao, Yan Zhao, Xinli Hao, Zhenyu Hou. Facile Solution-based Synthesis and Optical Properties of Co3O4 Nanoparticles at Low-temperature. Chem. Res. Chin. Univ. 29(2013), 1040-1044.

DOI: 10.1007/s40242-013-3137-0

Google Scholar