[1]
Derek R. Miller, Sheikh A. Akbar, Patricia A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: A reviews, Sens. and Actuators. B-Chem. 204(2014)250-272.
DOI: 10.1016/j.snb.2015.02.086
Google Scholar
[2]
I. Jolanda M. de Vries1, W. Joost Lesterhuis, Jelle O. Barentsz, Pauline Verdijk, J. Han van Krieken, Otto C. Boerman, Wim J. G. Oyen, Johannes J. Bonenkamp, Jan B. Boezeman, Gosse J. Adema, Jeff W. M. Bulte, Tom W. J. Scheenen, Cornelis J. A. Punt, Arend Heerschap, Carl G. Figdor, Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy, Nature Biotechnol. 23(2005).
DOI: 10.1038/nbt1154
Google Scholar
[3]
Kunal Mondal, Md. Azahar Ali, Ved V. Agrawal, Bansi D. Malhotra, Ashutosh Sharma, Highly sensitive biofunctionalized mesoporous electrospun TiO2 nanofiber based interface for biosensing, ACS Appl. Mater. Inter. 6(2014)2516-2627.
DOI: 10.1021/am404931f
Google Scholar
[4]
Zhiwen Chen, Dengyu Pan, Zhen Li, Zheng Jiao, Minghong Wu, Chan-Hung Shek, C. M. Lawrence Wu, Joseph K. L. Lai, Recent advances in tin dioxide materials: some developments in thin films, nanowires, and nanorods, Chem. REV. 114(2014)7442-7486.
DOI: 10.1021/cr4007335
Google Scholar
[5]
N. Tiwale, Zinc oxide nanowire gas sensors: fabrication, functionalisation and devices, Mater. Sci. Technol. 31(2015)1681-1697.
DOI: 10.1179/1743284714y.0000000747
Google Scholar
[6]
Jussara F. Carneiro, Maria J. Paulo, Mohamed Siaj, Ana C. Tavares, Marcos R.V. Lanza, Nb2O5 nanoparticles supported on reduced graphene oxide sheets as electrocatalyst for the H2O2 electrogeneration, J. Catal. 332(2015)51-61.
DOI: 10.1016/j.jcat.2015.08.027
Google Scholar
[7]
Yi Zhao Chen, Cai Ting Yang, Chi Bun Ching, Rong Xu, Immobilization of lipases on hydrophobilized zirconia nanoparticles: highly enantioselective and reusable biocatalysts. Langmuir. 24(2008)8877-8884.
DOI: 10.1021/la801384c
Google Scholar
[8]
Le Thuy Hoa, Chung Jin Suk, Hur Seung Hyun. A highly sensitive enzyme-free glucose sensor based on Co3O4 nanoflowers and 3D graphene oxide hydrogel fabricated via hydrothermal synthesis. Sensors Actuators B. 223 (2016) 76-82.
DOI: 10.1016/j.snb.2015.09.009
Google Scholar
[9]
Lizeng Gao, Jie Zhuang, Leng Nie, Jinbin Zhang, Yu Zhang, Ning Gu, Taihong Wang, Jing Feng, Dongling Yang, Sarah Perrett, Xiyun Yan, Intrinsic peroxidase-like activity of ferromagnetic nanoparticles, Nat. Nanotechnol. 2(2007)577-583.
DOI: 10.1038/nnano.2007.260
Google Scholar
[10]
Lihua Wang, Yi Zeng, Aiguo Shen, Xiaodong Zhou, Jiming Hu, Three dimensional nano-assemblies of noble metal nanoparticle-infinite coordination polymers as specific oxidase mimetics for degradation of methylene blue without adding any cosubstrate, Chem. Commum. 51(2015).
DOI: 10.1039/c4cc08089k
Google Scholar
[11]
Jianshuai Mu, Yan Wang, Min Zhao, Li Zhang, Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles, Chem. Commun. 48(2012)2540-2542.
DOI: 10.1039/c2cc17013b
Google Scholar
[12]
Guoyong Huang, Shengming Xu, Junlian Wang, Recent development of Co3O4 and its composites as anode materials of lithium-ion batteries, Acta. Chimica. Sinica. 71(2013)1589-1597.
DOI: 10.6023/a13060656
Google Scholar
[13]
R. Vittal, Kuo-Chuan Ho, Cobalt Oxide Electrodes-Problem and a Solution Through a Novel Approach using Cetyltrimethylammonium Bromide (CTAB), Cat. Rev. -Sci. Eng. 57(2015)145-191.
DOI: 10.1080/01614940.2015.1035192
Google Scholar
[14]
Wentao Wang, Xing Xiao, Jia Chen, Li Jia, Carboxyl modified magnetic nanoparticles coated open tubular column for capillary electrochromatographic separation of biomolecules, J. Chromatogr. A 1411(2015)92-100.
DOI: 10.1016/j.chroma.2015.07.111
Google Scholar
[15]
M. Casas-Cabanas, G. Binotto, D. Larcher, A. Lecup, V. Giordani, J. M. Tarascon, Defect chemistry and catalytic activity of nanosized Co3O4, Chem. Mater. 21(2009)1939-(1947).
DOI: 10.1021/cm900328g
Google Scholar
[16]
Jiefu Yin, Huaqiang Cao, Yuexiang Lu, Self-assembly into magnetic Co3O4 complex nanostructures as peroxidase, J. Mater. Chem. 22(2012)527-534.
DOI: 10.1039/c1jm14253d
Google Scholar
[17]
Yanhua Zhang, Aiqin Wang, Yanqiang Huang, Qinqin Xu, Jianzhong Yin, Tao Zhang, Nanocasting synthesis of mesostructured Co3O4 via a supercritical CO2 deposition method and the catalytic performance for co oxidation, Catal. Lett. 142(2012)275-281.
DOI: 10.1007/s10562-011-0748-2
Google Scholar
[18]
Katalin Sinkó1, Géza Szabó1, Miklós Zrínyi, Liquid-phase synthesis of cobalt oxide nanoparticles, J. Nanosci. Nanotechno. 11(2011)1-9.
Google Scholar
[19]
Yunling Li, Jingzhe Zhao, Yuanyuan Dan, Dechong Ma, Yan Zhao, Shengnan Hou, Haibo Lin, Zichen Wang, Low temperature aqueous synthesis of highly dispersed Co3O4 nanocubes and their electrocatalytic activity studies, Chem. Eng. J. 166(2011)428-434.
DOI: 10.1016/j.cej.2010.10.080
Google Scholar
[20]
Bao Wang, Ting Zhu, Haobin Wu, Rong Xu, Junsong Chen, Xiongwen Lou, Porous Co3O4 nanowires derived from long Co(CO3)0. 5(OH)·0. 11H2O nanowires with improved supercapacitive properties, Nanoscale. 6(2012) 2145-9.
DOI: 10.1039/c2nr11897a
Google Scholar
[21]
Trilok K. Pathak, Vinod Kumar, Jai Prakash, L.P. Purohit, H.C. Swart, R.E. Kroon, Fabrication and characterization of nitrogen doped p-ZnO on n-Siheterojunctions. Sensors Actuators A. 247 (2016) 475–481.
DOI: 10.1016/j.sna.2016.07.002
Google Scholar
[22]
Shijiao Sun, Qiuming Gao, Huanlei Wang, Jingkang Zhu, Hongliang Guo, Influence of textural parameters on the catalytic behavior for CO oxidation over ordered mesoporous Co3O4, Appl. Catal, B-Environ. 97(2010)284-291.
DOI: 10.1016/j.apcatb.2010.04.016
Google Scholar
[23]
Yunling Li, Jingzhe Zhao, Yan Zhao, Xinli Hao, Zhenyu Hou. Facile Solution-based Synthesis and Optical Properties of Co3O4 Nanoparticles at Low-temperature. Chem. Res. Chin. Univ. 29(2013), 1040-1044.
DOI: 10.1007/s40242-013-3137-0
Google Scholar